主缆与鞍座间摩擦抗力评估的混合解析数值法

张清华, 王玉威, 程震宇, 贾东林

中国公路学报 ›› 2020, Vol. 33 ›› Issue (11) : 158-168.

PDF全文下载(8020 KB)
PDF全文下载(8020 KB)
中国公路学报 ›› 2020, Vol. 33 ›› Issue (11) : 158-168. DOI: 10.19721/j.cnki.1001-7372.2020.11.014
桥梁工程

主缆与鞍座间摩擦抗力评估的混合解析数值法

  • 张清华, 王玉威, 程震宇, 贾东林
作者信息 +

Hybrid Analytical-numerical Method for Evaluating the Frictional Resistance Between Main Cable and Saddle

  • ZHANG Qing-hua, WANG Yu-wei, CHENG Zhen-yu, JIA Dong-lin
Author information +
文章历史 +

摘要

为保障多塔悬索桥中主塔鞍座的抗滑移安全性,准确评估主缆与鞍座间的摩擦抗力,提出一种适用于鞍座摩擦抗力分析的混合解析数值法。首先,通过分析滑移临界状态下鞍座内索股的受力状态,将主缆与鞍座接触面间摩擦抗力的求解问题逐步分解,最终简化为求解鞍座任意截面处索股与鞍座接触面间压力分布的平面应变问题;其次,沿纵向将鞍座均匀离散化为多个截面,建立相应截面的二维有限元模型,并得出滑移临界状态下各截面处索股与鞍座接触面间的压力分布;采用将各段压力求和再乘以摩擦因数的方式求出主缆与鞍座间的摩擦抗力及其分布,建立适用于主缆与鞍座间摩擦抗力评估的混合解析数值法,并通过模型试验验证其准确性;最后,基于所提出的混合解析数值法对鹦鹉洲长江公路大桥实桥的中主鞍座摩擦抗力进行分析与讨论。研究表明:所提出的混合解析数值法计算结果和试验结果吻合良好,具有计算效率和精度高,评估流程简洁和工程应用便捷等优点,可作为评估主缆与鞍座间摩擦抗力的依据;主缆与鞍座接触面间压力的绝对值和摩擦抗力均呈由上到下、由松边到紧边递增的分布特性;通过设置竖向摩擦板以增加数个竖向摩擦板面,从而有效提高主缆与鞍座间的摩擦抗力,可大幅提高主缆与鞍座间的抗滑移安全性。

Abstract

A hybrid analytical-numerical method was proposed to study the characteristic of frictional resistance between main cable and saddle of multi-span suspension bridges, for ensuring their anti-slip safety. Firstly, the problem of analyzing the frictional resistance was decomposed step by step based on the analysis of stress state of the main cable and saddle under critical slipping state; then, it was simplified to a plane strain problem to analyze the pressure distribution between the main cable and saddle in an arbitrary section. Subsequently, the saddle was uniformly divided into several sections along the longitudinal direction, and the corresponding two-dimensional finite element models were established to obtain the normal stress distribution between the main cable and saddle in each chosen section under critical slipping state; then, the frictional resistance and its distribution between the main cable and saddle were obtained by summing the product of the coefficient of friction and the pressure within two adjacent chosen sections. Finally, based on the above evaluation process, a hybrid analytical-numerical method was established to evaluate the characteristic of the frictional resistance between the main cable and saddle; the proposed method was then validated against model experiments. The proposed method possesses high calculation efficiency and accuracy, has a simple evaluation process, and affords engineering application convenience, which can be used to evaluate the frictional resistance between the main cable and saddle. The absolute values of pressure distribution and frictional resistance in the saddle increase gradually from top to bottom and from the loose side to the tight side. The installation of a vertical friction plate can add several vertical friction plate surfaces to improve the frictional resistance between the main cable and saddle effectively, and the anti-slip safety of the saddle can be improved by adding the vertical friction plate.

关键词

桥梁工程 / 多塔悬索桥 / 混合解析数值法 / 摩擦抗力 / 鞍座 / 竖向摩擦板

Key words

bridge engineering / multi-span suspension bridge / hybrid analytical-numerical method / frictional resistance / saddle / vertical friction plate

引用本文

导出引用
张清华, 王玉威, 程震宇, 贾东林. 主缆与鞍座间摩擦抗力评估的混合解析数值法[J]. 中国公路学报, 2020, 33(11): 158-168 https://doi.org/10.19721/j.cnki.1001-7372.2020.11.014
ZHANG Qing-hua, WANG Yu-wei, CHENG Zhen-yu, JIA Dong-lin. Hybrid Analytical-numerical Method for Evaluating the Frictional Resistance Between Main Cable and Saddle[J]. China Journal of Highway and Transport, 2020, 33(11): 158-168 https://doi.org/10.19721/j.cnki.1001-7372.2020.11.014
中图分类号: U448.25   

参考文献

[1] GIMSING N J, GEORGAKIS C T. Cable Supported Bridges:Concept and Design[M].3rd ed. Chichester:John Wiley & Sons, Ltd, 2012.
[2] NAZIR C P.Multispan Balanced Suspension Bridge[J]. Journal of Structural Engineering, 1986, 112(11):2512-2527.
[3] YOSHIDA O, OKUDA M, MORIYA T. Structural Characteristics and Applicability of Four-span Suspension Bridge[J]. Journal of Bridge Engineering, 2004, 9(5):453-463.
[4] 孙利民,尚志强,夏烨.大数据背景下的桥梁结构健康监测研究现状与展望.中国公路学报,2019,32(11):1-20. SUN Li-min, SHANG Zhi-qiang, XIA Ye. Development and Prospect of Bridge Structural Health Monitoring in the Context of Big Data. China Journal of Highway and Transport, 2019, 32(11):1-20.
[5] 彭卫兵,沈佳栋,唐翔,等.近期典型桥梁事故回顾、分析与启示.中国公路学报,2019,32(12):132-144. PENG Wei-bing, SHEN Jia-dong, TANG Xiang, et al. Review, Analysis, and Insights on Recent Typical Bridge Accidents. China Journal of Highway and Transport, 2019, 32(12):132-144.
[6] 杨进.泰州长江公路大桥主桥三塔悬索桥方案设计的技术理念[J].桥梁建设,2007(3):33-35. YANG Jin. Technical Ideas of Conceptual Design of Three-tower Suspension Bridge for Main Bridge of Taizhou Changjiang River Highway Bridge[J]. Bridge Construction, 2007(3):33-35.
[7] 万田保,王忠彬,韩大章,等.泰州长江公路大桥三塔悬索桥中塔结构形式的选取[J].世界桥梁,2008(1):1-4. WAN Tian-bao, WANG Zhong-bin, HAN Da-zhang, et al. Selection of Structural Type for Intermediate Tower of Three Tower Suspension Bridge of Taizhou Changjiang River Highway Bridge[J]. World Bridges, 2008(1):1-4.
[8] THAI H T, CHOI D H. Advanced Analysis of Multi-Span Suspension Bridges[J]. Journal of Constructional Steel Research, 2013, 90:29-41.
[9] 徐国平,邓海.武汉阳逻长江大桥总体设计[J].公路,2004(10):1-6. XU Guo-ping, DENG Hai. Design of Yangluo Yangtze River Bridge in Wuhan[J]. Highway, 2004(10):1-6.
[10] 柴生波,肖汝诚,王秀兰,等.多塔悬索桥主缆与鞍座抗滑解析计算方法[J].中国公路学报,2016,29(4):59-66. CHAI Sheng-bo, XIAO Ru-cheng, WANG Xiu-lan, et al. Analytical Method for Calculating Anti-slip Safety Factor Between Main Cable and Saddle in Multi-tower Suspension Bridge[J]. China Journal of Highway and Transport, 2016, 29(4):59-66.
[11] 李万恒,王元丰,李鹏飞,等.三塔悬索桥桥塔适宜刚度体系研究[J].土木工程学报,2017,50(1):75-81. LI Wan-heng, WANG yuan-feng, LI Peng-fei, et al. Rational Distribution Principle for the Pylon Stiffness of Three-pylon Suspension Bridges[J]. China Civil Engineering Journal, 2017, 50(1):75-81.
[12] TAKENA K, SASAKI M, HATA K, et al. Slip Behavior of Cable Against Saddle in Suspension Bridges[J]. Journal of Structural Engineering, 1992, 118(2):377-391.
[13] HASEGAWA K, KOJIMA H, SASAKI M, et al. Frictional Resistance Between Cable and Saddle Equipped with Friction Plate[J]. Journal of Structural Engineering, 1995, 121(1):1-14.
[14] 吉林,陈策,冯兆祥.三塔悬索桥中塔主缆与鞍座间抗滑移试验研究[J].公路,2007(6):1-6. JI Lin, CHEN Ce, FENG Zhao-xiang. A Study on Slip Resistance Between Main Cable and Saddle[J]. Highway, 2007(6):1-5.
[15] 张清华,李乔.悬索桥主缆鞍座间摩擦特性试验研究[J].土木工程学报,2013,46(4):85-92. ZHANG Qing-hua, LI Qiao. Studies on Cable-saddle Frictional Characteristics for Long-span Suspension Bridges[J]. China Civil Engineering Journal, 2013, 46(4):85-92.
[16] ZHANG Q H, CHENG Z Y, CUI C, et al. Analytical Model for Frictional Resistance Between Cable and Saddle of Suspension Bridges Equipped with Vertical Friction Plates[J]. Journal of Bridge Engineering, 2017, 22(1):04016103.
[17] 沈锐利,王路,王昌将,等.悬索桥主缆与索鞍间侧向力分布模式的模型试验研究[J].土木工程学报,2017,50(10):75-81. SHEN Rui-li, WANG LU, WANG Chang-jiang, et al. Experimental Study on Distribution Pattern of Lateral Force Between Main Cable and Cable Saddle for Suspension Bridge[J]. China Civil Engineering Journal, 2017, 50(10):75-81.
[18] 王路,沈锐利,白伦华,等.悬索桥主缆与索鞍间滑移行为及力学特征试验[J].中国公路学报,2018,31(9):75-83,103. WANG Lu, SHEN Rui-li, BAI Lun-hua, et al. Test for Slip Behavior and Mechanical Characteristics Between Main Cable and Saddle in Suspension Bridges[J]. China Journal of Highway and Transport, 2018, 31(9):75-83, 103.
[19] 张清华,李乔,周凌远.悬索桥主缆与鞍座摩擦特性理论分析方法[J].中国公路学报,2014,27(1):44-50. ZHANG Qing-hua, LI Qiao, ZHOU Ling-yuan. Theoretical Analysis of Cable-saddle Frictional Characteristics for Suspension Bridges[J]. China Journal of Highway and Transport, 2014, 27(1):44-50.
[20] CHENG Z Y, ZHANG Q H, BAO Y, et al. Analytical Study on Frictional Resistance Between Cable and Saddle Equipped with Friction Plates for Multi-span Suspension Bridges[J]. Journal of Bridge Engineering, 2018, 23(1):04017118.
[21] 张清华,程震宇,贾东林,等.悬索桥主缆与鞍座抗滑移安全系数的确定方法[J].中国公路学报,2017,30(7):41-49. ZHANG Qing-hua, CHENG Zhen-yu, JIA Dong-lin, et al. Method for Determining Anti-slip Safety Factors Between Main Cable and Saddle in Suspension Bridge[J]. China Journal of Highway and Transport, 2017, 30(7):41-49.
[22] 王路,沈锐利,王昌将,等.悬索桥主缆与索鞍间侧向力理论计算方法与公式研究[J].土木工程学报,2017,50(12):87-96. WANG Lu, SHEN Rui-li, WANG Chang-jiang, et al. Theoretical Calculation Method and Formula for Lateral Force Between Main Cable and Cable Saddle for Suspension Bridge[J]. China Civil Engineering Journal, 2017, 50(12):87-96.
[23] WANG L, SHEN R L, WANG C J, et al. Theoretical and Experimental Studies of the Antislip Capacity Between Cable and Saddle Equipped with Horizontal Friction Plates[J]. Journal of Bridge Engineering, 2019, 24(4):04019005.
[24] 肖刚.三塔悬索桥主缆与鞍座抗滑移设计研究[D].成都:西南交通大学,2015. XIAO Gang. Research on the Design of Anti-slide Between Main Cable and Saddle of Three-pylon Suspension Bridges[D]. Chengdu:Southwest Jiaotong University, 2015.
[25] 季申增.悬索桥主缆与索鞍间侧向力及摩擦滑移特性分析[D].成都:西南交通大学, 2017. JI Shen-zeng. Character Analysis of Lateral Force and Slip Friction Between Main Cable and Saddle in Suspension Bridge[D]. Chengdu:Southwest Jiaotong University, 2017.
[26] ZHANG Q H, KANG J P, BAO Y, et al. Numerical Study on Cable-saddle Frictional Resistance of Multispan Suspension Bridges[J]. Journal of Constructional Steel Research, 2018, 150:51-59.
[27] 孟凡超.悬索桥[M].北京:人民交通出版社,2011. MENG Fan-chao. Suspension Bridge[M]. Beijing:China Communications Press, 2011.
[28] GB/T 17101-2008,桥梁缆索用热镀锌钢丝[S]. GB/T 17101-2008, Hot-dip Galvanized Steel Wires for Bridge Cables[S].
[29] JTG/T D65-05-2015,公路悬索桥设计规范[S]. JTG/T D65-05-2015, Specification for Design of Highway Suspension Bridge[S].

基金

国家自然科学基金项目(51578455,51778533,51878561,51978579);“十二五”国家科技支撑计划项目(2011BAG07B03);桥梁结构健康与安全国家重点实验室开放课题重点项目(BHSKL19-06-KF)
National Natural Science Foundation of China (51578455, 51778533, 51878561, 51978579); “12th Five Year Plan” National Science and Technology Support Program of China (2011BAG07B03); The Open Key Fund Sponsored Program of State Key Laboratory for Bridge Health and Safety (BHSKL19-06-KF)
PDF全文下载(8020 KB)

876

Accesses

0

Citation

Detail

段落导航
相关文章

/