首页 | 本学科首页   官方微博 | 高级检索  
     

大跨度自锚式悬索桥主梁钢-混结合段模型试验
引用本文:秦凤江,周绪红,梁博文,狄谨,涂熙,徐梁晋,邹杨. 大跨度自锚式悬索桥主梁钢-混结合段模型试验[J]. 中国公路学报, 2018, 31(9): 52-64
作者姓名:秦凤江  周绪红  梁博文  狄谨  涂熙  徐梁晋  邹杨
作者单位:1. 重庆大学 山地城镇建设与新技术教育部重点实验室, 重庆 400045;2. 重庆大学 土木工程学院, 重庆 400045
基金项目:国家重点研发计划项目(2016YFC0701202);国家自然科学基金项目(51608069);中央高校基本科研业务费专项资金项目(106112016CDJXY200002)
摘    要:为研究大跨度自锚式悬索桥主梁钢-混结合段的受力性能与传力机理,以重庆鹅公岩轨道专用桥为研究背景,设计相似比为1:3的钢-混结合段缩尺试验模型,采用自平衡加载方法施加轴向试验荷载,测试模型的应力与滑移情况,并将试验结果与有限元分析结果进行对比,验证有限元模拟方法的正确性;而后利用有限元分析结果,得到钢-混结合段在轴向荷载作用下的传力机理。研究结果表明:在试验荷载作用下,试验模型各构件的应力水平均随荷载增大呈线性趋势增长,结构整体处于弹性工作状态;结合段开孔钢板与填充混凝土之间的相对滑移量较小,最大相对滑移量仅为4.2 μm,钢-混之间的协同受力状态良好;轴向荷载首先通过结合段开孔钢板端部的面内承压作用传递至钢梁,之后PBL连接件与栓钉连接件进一步将轴力传递至钢梁,最后通过承压板的面外承压作用将剩余轴力全部传递至钢梁;其中,承压板为主要传力构件,传递61.1%的轴力,剪力连接件与开孔钢板端部传力比例分别为17.0%与21.9%,开孔钢板端部的传力作用不可忽略。研究结果可为后续类似结构的研究与设计提供参考。

关 键 词:桥梁工程  钢-混结合段  模型试验  传力机理  有限元分析  
收稿时间:2018-02-09

Experiment on Steel-concrete Joint of Hybrid Girder of a Long-span Self-anchored Suspension Bridge
QIN Feng-jiang,ZHOU Xu-hong,LIANG Bo-wen,DI Jin,TU Xi,XU Liang-jin,ZOU Yang. Experiment on Steel-concrete Joint of Hybrid Girder of a Long-span Self-anchored Suspension Bridge[J]. China Journal of Highway and Transport, 2018, 31(9): 52-64
Authors:QIN Feng-jiang  ZHOU Xu-hong  LIANG Bo-wen  DI Jin  TU Xi  XU Liang-jin  ZOU Yang
Affiliation:1. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing 400045, China;2. School of Civil Engineering, Chongqing University, Chongqing 400045, China
Abstract:To investigate the mechanical behavior and load transfer mechanism of a steel-concrete joint (SCJ) of a hybrid girder of a self-anchored suspension bridge, a model test of the Egongyan rail transit bridge was conducted at a scale of 1:3 using self-balancing loading. The stress distribution and steel-concrete slip of the model were measured and compared with finite element analysis (FEA) results. The axial force transfer mechanism of the SCJ was analyzed based on the FEA results. The results show that the structure is elastic under test loads. The steel-concrete slip is small and no more than 4.2 μm, which indicates that steel and concrete can bear the force collaboratively. The axial force is transferred from the concrete to the steel box through the in-plane bearings of the perforated steel plates' ends, shear connectors, and out-plane bearings of the bearing plate. The bearing plate serves as the main load-transferring component, transferring 61.1% of the axial load. The shear connectors and perforated steel plates transfer 17.0% and 21.9% of the axial load, respectively. Thus, the effect of the in-plane bearings of the perforated steel plates' ends cannot be neglected. The results of this work can serve as a reference for future studies and designs of similar structures.
Keywords:bridge engineering  steel-concrete joint  model test  force transfer mechanism  finite element analysis  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国公路学报》浏览原始摘要信息
点击此处可从《中国公路学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号