首页 | 本学科首页   官方微博 | 高级检索  
     

基于混合遗传算法的杂货船装载优化问题
引用本文:朱莹, 向先波, 杨运桃. 基于混合遗传算法的杂货船装载优化问题[J]. 中国舰船研究, 2015, 10(6): 126-132. DOI: 10.3969/j.issn.1673-3185.2015.06.019
作者姓名:朱莹  向先波  杨运桃
基金项目:湖北省自然科学基金资助项目(2014CFB253);高等学校博士学科点专项科研基金资助项目(20120142120045);中央高校基本科研业务费专项基金资助项目(2015TS006)
摘    要:杂货船的装载问题属于典型的三维装箱问题,在分析杂货船装载问题的特点的基础上,以船舱空间利用率最大为目标,建立杂货船装载问题的数学模型。针对模型特点,提出一种结合启发式算法和遗传算法的混合遗传算法,设计一种新的三空间划分方法,并对此算法进行仿真试验验证。以文献[3]的一组经典测试数据为实例,经与同类装箱问题中的同类型算法进行对比分析,发现空间利用率达到了92.94%,与其他算法的结果相比具有明显的优势,验证了优化算法的有效性。

关 键 词:杂货船  三维装箱  启发式算法  遗传算法
收稿时间:2015-05-28

General cargo ship loading problems based on the hybrid genetic algorithm
ZHU Ying, XIANG Xianbo, YANG Yuntao. General cargo ship loading problems based on the hybrid genetic algorithm[J]. Chinese Journal of Ship Research, 2015, 10(6): 126-132. DOI: 10.3969/j.issn.1673-3185.2015.06.019
Authors:ZHU Ying  XIANG Xianbo  YANG Yuntao
Abstract:General cargo ship loading problems belong to general three-dimensional container loading problems. In this paper, based on the analysis of general cargo ship loading problems and taking the goal of maximizing the space utilization, a mathematical model of general cargo ship loading problems is estab-lished. By analyzing the characteristics of the model, a hybrid genetic algorithm combined with the heuris-tic algorithm and the genetic algorithm is presented, and a new type of three-space partition method is de-signed, both of which being realized along with simulation and experimental confirmation. By examining a classic set of test data of Loh & Nee as an example, the space utilization is seen to reach 92.94%, which demonstrates distinct advantages to similar algorithms for the container loading problems. The experimental results show that the hybrid genetic algorithm is feasible on solving general cargo ship loading problems.
Keywords:general cargo ship  three-dimensional container loading  heuristic algorithm  genetic algorithm
本文献已被 CNKI 等数据库收录!
点击此处可从《中国舰船研究》浏览原始摘要信息
点击此处可从《中国舰船研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号