首页 | 本学科首页   官方微博 | 高级检索  
     

BP和RBF神经网络在边坡稳定性评估中的比较研究
引用本文:麻官亮,邵玉刚. BP和RBF神经网络在边坡稳定性评估中的比较研究[J]. 路基工程, 2012, 0(1): 161-164
作者姓名:麻官亮  邵玉刚
作者单位:中交第二公路勘察设计研究院有限公司,武汉 430052
摘    要:
通过实例分析,对BP神经网络和RBF神经网络在边坡稳定性评估中的应用进行了比较研究,结果表明,BP神经网络和RBF神经网络均能很好地对边坡稳定性进行评估,但RBF神经网络比BP神经网络的训练速度更快,效率更高,并且对于同样的精度要求,RBF神经网络对边坡稳定性的评估结果更加准确和适用。

关 键 词:BP神经网络   RBF神经网络   边坡稳定   评估
收稿时间:2019-11-10

Comparative Research on BP and RBF Neural Networks in Slope Stability Assessment
MA Guan-liang,SHAO Yu-gang. Comparative Research on BP and RBF Neural Networks in Slope Stability Assessment[J]. , 2012, 0(1): 161-164
Authors:MA Guan-liang  SHAO Yu-gang
Affiliation:(China Communications Second Highway Survey,Design and Research Institute,Wuhan 430052,China)
Abstract:
Through case analysis,the application of BP and RBF neural networks in slope stability assessment is studied comparatively.The result shows that both BP and RBF neural networks could be applied for slope stability assessment;however RBF neural network has faster training speed and higher efficiency than BP neural network and for the same requirement on accuracy,the application result of RBF neural network in slope stability assessment is more correct and applicable.
Keywords:BP neural network  RBF neural network  slope stability  assessment
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《路基工程》浏览原始摘要信息
点击此处可从《路基工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号