首页 | 本学科首页   官方微博 | 高级检索  
     

水电工程地质钻探岩芯的保管
引用本文:郭月姣, 吴毅昊, 马双, 等. 大洋勘探船岩芯储存库内温度场的数值模拟[J]. 中国舰船研究, 2020, 15(2): 159–164. doi: 10.19693/j.issn.1673-3185.01835
作者姓名:郭月姣  吴毅昊  马双  陈旭  孟博  雷淑雅  石大川  冯国增
作者单位:1.江苏科技大学 能源与动力学院,江苏 镇江 212003;2.上海外高桥造船有限公司,上海 200137;3.中国船舶及海洋工程设计研究院,上海 200011;4.重庆大学 土木工程学院,重庆 400045
基金项目:江苏省科技成果转化专项资金资助项目(BA2016145)
摘    要:
  目的  探究使用计算流体动力学(CFD)方法分析大洋勘探船岩芯储存库内的温度分布。  方法  岩芯储存库库内设计温度分别为高温库4 ℃,低温库−20 ℃,控温精度为±1 ℃,选择标准k-ε模型进行CFD模拟。在空库吊顶情况下,岩芯储存库的冷风机分别采用横向、纵向和斜角布置方式,模拟不同方案的温度分布,确定冷风机的最佳放置方式,并与实验结果进行对比分析。
  结果  研究表明,冷风机采用横向吊顶布置方式时温度偏离程度较小,且温度分布区域大多合格,布置方式合适。温度模拟与实验结果的误差基本在10%以下,也证明了CFD数值模拟结果较准确。  结论  CFD技术可准确模拟岩芯储存库内温度分布情况,为岩芯储存库冷风机设计提供科学依据。


关 键 词:大洋勘探船  岩芯储存库  数值模拟  温度场
收稿时间:2019-11-27
修稿时间:2020-01-01

Storage and management of geological core in hydropower engineering
GUO Y J, WU Y H, MA S, et al. Numerical simulation of temperature field in core storage of ocean exploration vessel[J]. Chinese Journal of Ship Research, 2020, 15(2): 159–164. doi: 10.19693/j.issn.1673-3185.01835
Authors:GUO Yuejiao  WU Yihao  MA Shuang  CHEN Xu  MENG Bo  LEI Shuya  SHI Dachuan  FENG Guozeng
Affiliation:1.School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China;2.Shanghai Waigaoqiao Shipbuilding Co., Ltd., Shanghai 200137, China;3.Marine Design and Research Institute of China, Shanghai 200011, China;4.School of Civil Engineering, Chongqing University, Chongqing 400045, China
Abstract:
  Objectives  This study is focused on whether CFD can be used to analyze the temperature distribution in the core storage of ocean exploration vessels.  Methods  In the core storage of ocean exploration vessels, high-temperature storage is 4°C, low-temperature storage is −20°C and temperature control accuracy is ±1°C. The standard k-ε turbulence model is used in this paper for CFD simulation. In the case of an empty storage ceiling, a transverse layout, a longitudinal layout and an oblique layout are separately adopted on the deployment scheme of the air cooler for high and low temperature storage. The temperature distributions of the different layout schemes are simulated to determine the optimal layout of the air cooler.
Then the simulation results are compared with the experimental results.
  Results  The result shows that when the air cooler adopts the transverse ceiling layout, the temperature deviation degree is small, and the temperature is mostly distributed in qualified areas, therefore this layout is selected. In the case of the transverse layout ceiling arrangement, the error between the simulation results and experiment results, is below 10%. This shows that the simulation results are reasonable.  Conclusions  CFD can accurately simulate temperature distribution in core storage, providing a strong scientific basis for the future design of core storage air coolers.
Keywords:ocean exploration vessel  core storage  numerical simulation  temperature field
点击此处可从《中国舰船研究》浏览原始摘要信息
点击此处可从《中国舰船研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号