首页 | 本学科首页   官方微博 | 高级检索  
     

随机时变车辆路径问题的多目标鲁棒优化方法
引用本文:段征宇,雷曾翔,孙硕,杨东援. 随机时变车辆路径问题的多目标鲁棒优化方法[J]. 西南交通大学学报, 2019, 54(3): 565-572. DOI: 10.3969/j.issn.0258-2724.20170617
作者姓名:段征宇  雷曾翔  孙硕  杨东援
作者单位:同济大学道路与交通工程教育部重点实验室;上海市城市规划设计研究院
基金项目:国家自然科学基金项目(71001079)
摘    要:车辆路径问题 (vehicle routing problem,VRP) 是物流配送的核心问题之一,为了提高物流配送的时效性,在传统VRP模型的基础上,同时考虑了路网交通状态的时变性和随机性,基于最小最大准则,提出了一种带硬时间窗的随机时变车辆路径问题 (stochastic time-dependent vehicle routing problem,STDVRP) 的多目标鲁棒优化模型. 设计了一种非支配排序蚁群算法 (non-dominated sorting ant colony optimisation,NSACO),求解STDVRP多目标优化模型;通过测试算例,对比分析了NSACO算法与改进型非支配排序遗传算法 (non-dominated sorting genetic algorithm II,NSGA-II). 研究结果表明:对于车辆数最小的Pareto边界解,NSACO算法的平均车辆数比NSGA-II算法小3.33%;对于最坏行程时间最小的Pareto边界解,NSACO算法的平均最坏行程时间比NSGA-II算法小17.49%. 

关 键 词:车辆路径问题   随机时变路网   鲁棒优化   多目标优化   蚁群算法
收稿时间:2017-08-15

Multi-Objective Robust Optimisation Method for Stochastic Time-Dependent Vehicle Routing Problem
DUAN Zhengyu,LEI Zengxiang,SUN Shuo,YANG Dongyuan. Multi-Objective Robust Optimisation Method for Stochastic Time-Dependent Vehicle Routing Problem[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 565-572. DOI: 10.3969/j.issn.0258-2724.20170617
Authors:DUAN Zhengyu  LEI Zengxiang  SUN Shuo  YANG Dongyuan
Abstract:The vehicle routing problem (VRP) is a core issue of distribution logistics. In order to improve the timeliness of deliveries, a multi-objective robust optimisation model based on the minimax criterion was proposed for the stochastic time-dependent vehicle routing problem (STDVRP) with hard time windows, considering both the stochastic and time-varying nature of link travel times. A non-dominated sorting ant colony optimisation (NSACO) algorithm was designed to solve this multi-objective optimisation model for the STDVRP. The NSACO algorithm was compared with the non-dominated sorting genetic algorithm II (NSGA-II) through computational instances. The results show that for the Pareto boundary of the minimised number of vehicles, the average number of vehicles for NSACO is 3.33% less than that of NSGA-II, and for the Pareto boundary of the minimised worst travel time, the average worst travel time for NSACO is 17.49% less than that of NSGA-II. 
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《西南交通大学学报》浏览原始摘要信息
点击此处可从《西南交通大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号