基于分块EnKF的非线性目标跟踪算法
doi: 10.3969/j.issn.0258-2724.2013.05.013
Nonlinear Target Tracking Algorithm Based on Block Ensemble Kalman Filter
-
摘要: 针对滤波航迹的相关性以及初始状态的选择会对跟踪性能产生影响的问题,将集合卡尔曼滤波算法引入到非线性目标跟踪领域,验证了其可行性和有效性,提出了基于分块集合卡尔曼滤波的非线性目标跟踪算法.采用分块思想生成初始集合,使用协方差矩阵加权方法解决分块间的航迹相关问题.仿真结果表明基于分块集合卡尔曼滤波的目标跟踪算法计算复杂度和以往的集合卡尔曼滤波算法同阶的情况下可以提供更高的运动参数估计精度,解决了粒子滤波算法计算量大难以进行实时跟踪的问题.Abstract: As target tracking performance depends on correlated tracks and the selection of filter initial states, ensemble Kalman filter was introduced to nonlinear target tracking system, and the feasibility and validity of the system were verified. A new target tracking algorithm based on block ensemble Kalman filter was proposed, where initial ensemble was produced by the block method, and covariance matrix weighting was used for all the blocks in the target tracking process. The simulation results show that the algorithm based on block ensemble Kalman filter has the same computational complexity as previous ensemble Kalman filter while offers higher estimation accuracy for motion parameters, and can fulfill real-time tracking in contrast to high computational complexity of particle filter.
-
Key words:
- ensemble Kalman filter /
- nonlinear filtering /
- target tracking /
- block
-
在城市地铁和城际铁路修建中,经常会遇到新建隧道近距离下穿既有铁路的情况[1-2]. 新建隧道开挖施工不可避免会引起铁路路基沉降[3-4],诱发轨道产生几何变形,加剧轮轨动力相互作用,进而影响轨道结构服役性能和列车乘坐舒适性,严重时将造成列车脱轨和铁路停运[5-6]. 因此,研究隧道下穿施工诱发上覆既有铁路轨面变形具有重要的工程意义.
目前,国内外学者采用理论方法分析新建隧道施工对邻近既有结构的影响时,通常采用两阶段分析方法:第1阶段,忽略既有结构的影响,计算新建隧道施工引起邻近结构所处位置土体的附加应力或自由变形;第2阶段,将既有结构视为连续地基上梁模型,并将土体附加应力或自由变形视为外部作用,应用数值方法[7-8]或简化方法等[9-10]分析邻近既有结构的变形和内力的变化. 两阶段分析方法由于使用简单,被广泛用于分析隧道施工对邻近管线[11-16]、上方铁路[17]、和邻近建筑物[9,18]的影响.
同时,针对路基沉降引起铁路线路轨道变形开展了一定的研究:邹春华等[19]、付龙龙等[20]分别采用室内试验和数值方法对余弦型路基沉降与有砟轨道变形之间的互相关系进行了研究,并且,邹春华等[21]基于弹性点支承梁模型提出了有砟铁路路基沉降引起轨面变形的计算模型;考虑无砟道床为板状多层结构,张乾等[22]采用梁-板模型分别模拟钢轨及无砟道床,建立了无砟轨道-路基-土体的三维空间有限元模型,对地面沉降对无砟轨道系统平顺性的影响进行了分析,并指出支承层和路基表层间沉降差较大易出现离缝问题;郭宇等[23]、Jiang等[24]分别对双块式和整体板式无砟轨道路基沉降引起轨面变形几何特征与路基沉降波长、幅值之间的对应关系进行了研究.
以上相关理论研究中邻近既有结构均被简化为弹性地基上的单层梁模型,不能模拟地下结构与底部地基局部分离现象,不适用于计算新建隧道下穿施工引起既有无砟铁路的轨面变形. 为此,本文将无砟铁路结构视为双层地基梁模型,采用改进的Winkler弹性地基模型模拟轨道板与地基的互相作用,建立考虑轨道板底部局部脱空影响的路基沉降引起无砟铁路轨道变形的理论计算模型,进而采用解析方法推导了隧道下穿施工引起轨道变形计算式,为预测隧道下穿既有无砟铁路引起轨道变形提供理论支持.
1. 问题描述及控制方程
新建隧道下穿引起既有无砟铁路轨道变形的计算模型如图1所示,以隧道与铁路相交处为坐标原点,铁路线路方向和x轴建立水平坐标系. 图中:β为隧道与铁路的水平交角,Rt为隧道开挖半径,zt为隧道中心到铁路路基顶面的竖向距离, lt为轨道叠合梁底部局部脱空区长度,s(x)为隧道斜交下穿引起路基沉降,(0,xi)为铁路上任意点坐标.
本文拟采用两阶段分析方法进行求解,并作如下基本假定:
1) 钢轨视为两端自由的上层Euler梁,其竖向变形、弹性模量和截面惯性矩分别为wr、Er和Ir;
2) 轨道板和其下部支承层简化为下层弹性叠合梁,其竖向变形、弹性模量和截面惯性矩分别为wb、Eb和Ib;
3) 采用改进Winkler地基模拟叠合梁下的路基作用,地基的弹性系数为kb;
4) 采用线性弹簧模拟扣件系统,钢轨扣件系统单位长度的等效弹性系数为kr;
5) 隧道施工引起周围土体沉降曲线符合高斯分布.
根据Euler梁挠曲理论,叠合梁变形诱发钢轨(上层梁)变形的控制方程为
ErIrd4wr(x)dx4=−kr[wr(x)−wb(x)]. (1) 新建隧道施工前,叠合梁在轨道系统及自重作用下产生均匀沉降. 新建隧道下穿施工引起路基沉降,改变轨道板叠合梁与地基土间的互相作用,导致叠合梁产生变形. 若叠合梁变形大于路基顶面土体沉降,则叠合梁与地基土体间保持接触,两者之间仍然存在互相作用;否则,叠合梁与地基土体将发生分离(即局部脱空),两者互相作用力为0. 轨道板叠合梁(下层梁)变形的控制方程为
EbIbd4wb(x)dx4={kr[wr(x)−wb(x)]+γh,|x|⩽lt/2,kr[wr(x)−wb(x)]+γh−kb[wb(x)−s(x)],|x|>lt/2, (2) 式中:γ、h分别为叠合梁重度和高度;s(x)计算式[7,13-14]如式(3).
s(x)=πR2tVt√2πisexp[−0.5(xsinβis)2], (3) 式中:Vt为隧道施工引起的平均地层损失比,与施工条件相关;is为路基顶面沉降槽宽度半径,采用建议公式is=κzt进行计算,κ为地层沉降槽宽度参数,与土体条件相关.
2. 解析方法
将式(1)变形可得
wb(x)=ErIrkrd4wr(x)dx4+wr(x). (4) 对式(4)求4次导数,可得
d4wb(x)dx4=ErIrkrd8wr(x)dx8+d4wr(x)dx4. (5) 将式(4)、(5)依次代入式(2)中各分段方程,整理后可得关于钢轨变形的控制方程.
1) 当|x|⩽lt/2时
脱空区上方钢轨的变形控制方程为
d8wr(x)dx8+Cd4wr(x)dx4=krγhErIrEbIb, (6) 式中:C=krEbIb+krErIr.
求解式(6),可得钢轨中间脱空段的变形表达式为
wr(x)=eβ1x(c1cosβ1x+c2sinβ1x)+e−β1x(c3cosβ1x+c4sinβ1x)+c5+c6x+c7x2+c8x3+γh24(ErIr+EbIb)x4, (7) 式中:β1=4√kr4EbIb+kr4ErIr;c1~c8为待定参数,可用边界条件求出.
将式(7)代入式(4),可求得中间脱空区上方的轨道板叠合梁变形表达式为
wb(x)=D1[eβ1x(c1cosβ1x+c2sinβ1x)+e−β1x(c3cosβ1x+c4sinβ1x)]+c5+c6x+c7x2+c8x3+γh24(ErIr+EbIb)x4+γhErIrkr(ErIr+EbIb), (8) 式中:D1=1−4β41ErIrkr.
2) 当|x|>lt/2时
脱空区外侧钢轨变形控制方程为
d8wr(x)dx8+Ed4wr(x)dx4+Fwr(x)=Fs(x)+krγhErIrEbIb, (9) 式中:E=kr(ErIr+EbIb)ErIrEbIb+kbEbIb,F=krkbErIrEbIb.
求解式(9),并结合边界条件wr|x→∞=0,可得脱空区外侧钢轨变形表达式为
wr(x)=ˉwr(x)+γhkb+e−β2x(c9cosβ2x+c10sinβ2x)+e−β3x(c11cosβ3x+c12sinβ3x), (10) 式中:c9~c12为待定系数,可由边界条件确定. ˉwr(x)为路基沉降部分对应的方程特解,可采用展开级数法进行求解,β2、β3取值如式(11).
{β2=4√E−√E2−4F8,β3=4√E+√E2−4F8,E2−4F>0,β2=√24√F−√2√F−E2,β3=√24√F+√2√F−E2,E2−4F<0. (11) 将s(x)采用三角函数进行展开,记为
s(x)=a0+∞∑n=1(ancosnπxls), (12) 式中:a0=1ls+ls/2∫0s(x)dx,an=2ls+ls/2∫0s(x)cosnπxlsdx,ls为线路计算长度,n为三角级数项的编号.
路基沉降对应的轨道变形特解为
ˉwr(x)=a0+∞∑n=1Fcos(nπxls)(nπls)8+E(nπls)4+F. (13) 同理,将式(10)代入式(4),可求得脱空区外侧轨道板叠合梁变形表达式为
wb(x)=ˉwr(x)+ErIrkrd4ˉwr(x)dx4+γhkb+D2e−β2x(c9cosβ2x+c10sinβ2x)+D3e−β3x(c11cosβ3x+c12sinβ3x), (14) 式中:D2=1−4ErIrkrβ42,D3=1−4ErIrkrβ43.
根据Euler梁变形理论,可求得钢轨和轨道板叠合梁的转角θj、弯矩Mj和剪力Qj(j=r,b分别表示钢轨和叠合梁):
{θj=dwjdx,Mj=−EjIjd2wjdx2,Qj=−EjIjd3wjdx3. (15) 1) 由于模型对称性,当x=0时,钢轨和叠合梁的转角与剪力都为0,即
{dwjdx|x=0=0,d3wjdx3|x=0=0. (16) 2) 当x=lt/2时,钢轨和叠合梁的位移、转角、弯矩与剪力都保持连续,即
{wj|x−=lt/2=wj|x+=lt/2,dwjdx|x−=lt/2=dwjdx|x+=lt/2,d2wjdx2|x−=lt/2=d2wjdx2|x+=lt/2,d3wjdx3|x−=lt/2=d3wjdx3|x+=lt/2. (17) 根据上述推导的钢轨和轨道板叠合梁变形计算式,利用边界条件(式(16)、(17))可建立起一个关于待定系数的12 × 12阶线性方程组,编制MATLAB程序可求出待定系数. 回代入式(7)、(10)即为隧道下穿施工诱发无砟铁路钢轨变形. 由于脱空区长度lt未知,需要采用多次迭代法进行计算.
3. 数值验证
郭宇等[23]基于通用有限元软件ABAQUS,对余弦型路基沉降引起双块式无砟轨道的几何变形规律进行了模拟分析. 模型中采用空间梁单元模拟钢轨,采用弹簧-阻尼器模拟扣件系统,道床板、支承层和路基结构均采用实体单元模拟,结构材料参数见表1. 在轨枕与混凝土道床板、道床板与支承层、支承层与路基表面均进行接触设置,并充分考虑轨道结构和路基之间可能出现离缝甚至空吊现象.
表 1 无砟轨道材料参数Table 1. Parameters of ballastless rail material结构 弹性模量/Pa 泊松比 说明 钢轨 2.10 × 1011 0.30 T60 轨 道床板 3.25 × 1010 0.17 C40 混凝土 支承层 2.55 × 1010 0.17 C20 混凝土 路基 180 0.25 密度 300 kg/m3 为验证本文理论方法的正确性,采用本文理论方法对文献[23]中不同路基沉降幅值和波长条件下的轨面变形进行分析,模型中钢轨抗弯刚度为6.624 MN·m2,叠合梁抗弯刚度为1.225 GN·m2,扣件刚度为30 MN·m−1,路基弹性系数为200 MN·m−1. 本文计算结果与文献[23]的分析数据对比如图2所示,图2(a)中路基沉降波长取20 m,幅值分别取5 mm和20 mm;图2(b)中路基沉降幅值10 mm,波长分别取10 m和40 m.
从图2中可看出:当轨道结构未产生脱空(5 mm/20 m、10 mm/40 m)时,理论解析计算结果与数值模拟结果几乎一致;当轨道结构产生脱空(20 mm/20 m、10 mm/10 m)时,考虑轨道结构脱空的理论解析计算结果与数值模拟结果基本一致,小于未考虑轨道结构脱空的理论计算结果;当路基沉降为10 mm/10 m时,未考虑轨道结构脱空的理论方法求解出的钢轨变形最大值(7.9 mm)约为考虑轨道结构脱空的理论计算结果(2.3 mm)的3.4倍. 分析表明,当路基不均匀沉降引起无砟轨道结构产生离缝或空吊时,采用本文提出的理论方法仍能较为准确计算出轨面各点处变形值.
4. 参数分析
为控制新建隧道下穿既有铁路引起轨道变形,实际工程中通常采用减小隧道施工引起周围地层损失率或选择不同穿越角度和隧道埋深等措施. 为此,本节将针对上述3个参数对隧道下穿施工诱发轨面变形的影响进行分析. 算例中:开挖半径Rt=3.1 m,地层损失率Vt=0.5%,隧道埋深zt=6 m,地层沉降槽宽度参数κ=0.5,隧道与铁路线路垂直相交;无砟铁路结构参数取值与验证算例相同.
4.1 隧道埋深的影响
为分析隧道埋深对下穿施工引起钢轨变形的影响,采用本文理论方法分别计算不同隧道埋深(zt=2,4,6,10,20,40 m)条件下轨道的变形,其中轨道中点变形值及轨道板叠合梁脱空区宽度随隧道埋深的变化曲线如图3所示.
从图3中可看出,随着隧道埋深的逐步增大,轨道中点变形值及叠合梁底部脱空区宽度均先增大而后减小,当隧道埋深为6 m时达到峰值. 这是由于随着隧道埋深的增加,隧道施工引起路基顶部的沉降槽宽度将逐渐增大,但沉降槽最大沉降值却逐渐减小. 当新建隧道埋深较小时,隧道施工引起路基顶部的沉降槽的宽度较小,轨道叠合梁底部脱空区宽度和最大变形值较小;随着隧道埋深的增大,路基顶部沉降槽的宽度将增大,导致叠合梁底部脱空区宽度和钢轨中心点变形逐渐增大;当隧道埋深增大到一定值时,路基顶部的沉降逐渐平缓,导致叠合梁脱空区宽度逐渐减小,直至随路基协同变形. 由此可见,选择适当的隧道埋深穿越既有铁路可以有效控制隧道下穿施工引起上方轨道变形.
4.2 隧道施工引起地层损失率的影响
当隧道施工中地层损失率Vt分别取0.25%、0.50%、1.00%、1.50%、2.00%和2.50%时,隧道下穿施工诱发钢轨中点变形值及叠合梁底部脱空区宽度变化如图4所示. 由图可知:随着隧道施工过程中周围地层损失率的逐渐增大,钢轨中点变形值及叠合梁底部脱空区宽度均逐渐增大;当隧道施工中地层损失率从0.25%增大到2.50%时,钢轨中点变形值和叠合梁脱空区宽度分别从9.7 mm、4 m增大到48.6 mm和13 m,依次增长了约4.00倍、2.25倍. 由此可见,当减小隧道施工中地层损失率是控制隧道下穿施工引起钢轨变形的有效措施之一.
4.3 隧道与铁路水平夹角的影响
当新建隧道与铁路间的水平夹角β分别取15°、30°、45°、60°、75° 和90° 时,新建隧道下穿施工诱发轨道中点变形值及叠合梁底部脱空区宽度变化如图5所示. 由图可知:随着隧道与铁路线路间水平夹角的逐渐增大,钢轨中点变形值逐渐减小,而叠合梁底部脱空区宽度逐渐先增大、后基本保持不变. 这是由于当新建隧道与既有铁路线路间的水平夹角较小时,隧道施工引起上方铁路路基顶部沉降较为平缓,轨道叠合梁与路基之间保持跟随变形;随着隧道与铁路线路间水平夹角的增大,路基顶部沉降槽宽度逐渐变窄,轨道叠合梁与路基间产生变形差,轨道叠合梁底部将产生局部脱空,轨道中点变形将减小. 由此可见,选择较大角度穿越既有铁路有利于控制隧道下穿施工引起轨道的变形.
5. 小 结
1) 将无砟铁路轨道结构简化为双层地基梁,采用无拉力弹性地基模拟轨道板叠合梁与路基的互相作用,并根据叠合梁与路基间的变形差判别两者的接触状态,建立隧道下穿施工引起无砟铁路轨道变形的控制方程.
2) 将双层梁分为中间脱空段和两端接地段共三部分,采用解析方法分别推导出上、下层梁(钢轨和轨道板叠合梁)变形的通解和特解表达式,并结合边界条件和分段处连续条件求出变形表达式中的待定系数.
3) 随着隧道埋深的增大,轨道最大变形值及叠合梁底部脱空区宽度均呈先增大而后减小趋势. 随着隧道施工中周围地层损失率的增大,钢轨最大变形值及叠合梁底部脱空区宽度均逐渐增大. 随着隧道与铁路线路间水平夹角的增大,钢轨最大变形值逐渐减小,而叠合梁底部脱空区宽度逐渐增大、后保持不变.
-
GORDON N, SALMOND D. Novel approach to non-linear and non-Gaussian Bayesian state estimation[J]. Proc of institute electric engineering, 1993, 140(2): 107-113. WANG Xuezhi, DARKO M, SICKI R E, et al. Efficient and enhanced multi-target tracking with Doppler measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(4): 1400-1417. FOO P H. Combining the interacting multiple model method with particle filters for maneuvering target tracking with a multistatic radar system[J]. IET Radar, Sonar and Navigation, 2011, 5(7): 697-706. EVENSEN G. Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics[J]. Journal of Geophysical Research, 1994, 99(C5): 10143-10162. EVENSEN G. The ensemble Kalman filter: theoretical formulation and practical implementation[J]. Ocean Dynamics, 2003, 53(4): 343-367. JOHN D B, WADE T C, ZHAN Xiwu, et al. Evaluating the utility of remotely sensed soil moisture retrievals for operational agricultural drought monitoring[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3(1): 57-66. MITCHELL H L, HOUTEKAMER P L, PELLERIN G. Ensemble size, balance, and model-error representation in an ensemble Kalman filter[J]. Monthly Weather Review, 2002, 130(11): 2791-2808. SNYDER C, ZHANG F. Assimilation of simulated Doppler radar observations with an ensemble kalman filter[J]. Monthly Weather Review, 2003, 131(8): 1663-1677. DOWELL D C, Zhang Fuqing, WICKER L J. Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments[J]. Monthly Weather Review, 2004, 132(8): 1982-2005. CUI Bo, ZHANG Jiashu. The improved ensemble Kalman filter for multi-sensor target tracking[C]//2008 International Symposium on Information Science and Engineering. Washington D C: IEEE Computer Society, 2008: 263-265. ZHOU Yucheng, XU Jiahe, JING Yuanwei, et al. Extended target tracking using an IMM based nonlinear kalman Filters[C]//2010 American Control Conference. Marriott Waterfront. Baltimore: [s.n.], 2010: 6876-6881. XU Jiahe, ZHOU Yucheng, JING Yuanwei. Extended target tracking for high resolution sensor based ensemble kalman filters[C]//Chinese Control and Decision Conference. Xuzhou: IEEE, 2010: 3308-3313. PORNSARAYOUTH S, YAMAKITA M. Ensemble Kalman filter for multisensor fusion with multistep delayed measurements[C]//IEEE Aerospace Conference. Big Sky, MT: IEEE, 2011: 1-10. 张学峰,黄大吉,章本照. 集合数据同化方法的发展与应用概述[J]. 海洋学研究,2007,25(1): 88-94. ZHANG Xuefeng, HUANG Daji, ZHANG Benzhao. The developments and applications of ensemble-based data assimilation methods[J]. Journal of Marine Sciences, 2007, 25(1): 88-94. 杜航原,郝燕玲,赵玉新. 基于集合卡尔曼滤波的改进粒子滤波算法[J]. 系统工程与电子技术,2011,33(7): 1653-1657. DU Hangyuan, HAO Yanling, ZHAO Yuxin. Improved particle filter based on ensemble Kalman filter[J]. Systems Engineering and Electronics, 2011, 33(7): 1653-1657. -

计量
- 文章访问数: 1038
- HTML全文浏览量: 92
- PDF下载量: 494
- 被引次数: 0