首页 | 本学科首页   官方微博 | 高级检索  
     

基于分块EnKF的非线性目标跟踪算法
引用本文:崔波,张家树,杨宇. 基于分块EnKF的非线性目标跟踪算法[J]. 西南交通大学学报, 2013, 26(5): 863-869. DOI: 10.3969/j.issn.0258-2724.2013.05.013
作者姓名:崔波  张家树  杨宇
基金项目:国家自然科学基金资助项目(60971104)中央高校基本科研业务费专项资金资助项目(SWJTU11BR179)
摘    要:针对滤波航迹的相关性以及初始状态的选择会对跟踪性能产生影响的问题,将集合卡尔曼滤波算法引入到非线性目标跟踪领域,验证了其可行性和有效性,提出了基于分块集合卡尔曼滤波的非线性目标跟踪算法.采用分块思想生成初始集合,使用协方差矩阵加权方法解决分块间的航迹相关问题.仿真结果表明基于分块集合卡尔曼滤波的目标跟踪算法计算复杂度和以往的集合卡尔曼滤波算法同阶的情况下可以提供更高的运动参数估计精度,解决了粒子滤波算法计算量大难以进行实时跟踪的问题. 

关 键 词:集合卡尔曼滤波   非线性滤波   目标跟踪   分块
收稿时间:2012-01-14

Nonlinear Target Tracking Algorithm Based on Block Ensemble Kalman Filter
CUI Bo,ZHANG Jiashu,YANG Yu. Nonlinear Target Tracking Algorithm Based on Block Ensemble Kalman Filter[J]. Journal of Southwest Jiaotong University, 2013, 26(5): 863-869. DOI: 10.3969/j.issn.0258-2724.2013.05.013
Authors:CUI Bo  ZHANG Jiashu  YANG Yu
Abstract:As target tracking performance depends on correlated tracks and the selection of filter initial states, ensemble Kalman filter was introduced to nonlinear target tracking system, and the feasibility and validity of the system were verified. A new target tracking algorithm based on block ensemble Kalman filter was proposed, where initial ensemble was produced by the block method, and covariance matrix weighting was used for all the blocks in the target tracking process. The simulation results show that the algorithm based on block ensemble Kalman filter has the same computational complexity as previous ensemble Kalman filter while offers higher estimation accuracy for motion parameters, and can fulfill real-time tracking in contrast to high computational complexity of particle filter. 
Keywords:
点击此处可从《西南交通大学学报》浏览原始摘要信息
点击此处可从《西南交通大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号