首页 | 本学科首页   官方微博 | 高级检索  
     

内置磁流变阀对磁流变阻尼器动力性能的影响
引用本文:胡国良, 邓英俊, 冯海波, 李刚. 内置磁流变阀对磁流变阻尼器动力性能的影响[J]. 交通运输工程学报, 2021, 21(3): 289-299. doi: 10.19818/j.cnki.1671-1637.2021.03.021
作者姓名:胡国良  邓英俊  冯海波  李刚
作者单位:华东交通大学 载运工具与装备教育部重点实验室,江西 南昌 330013
基金项目:国家自然科学基金项目51765016江西省重点研发计划项目20192BBEL50012
摘    要:为提高阻尼器在结构尺寸受限时的输出阻尼力,以磁流变阻尼器为对象,研究了内置磁流变阀结构对磁流变阻尼器动力性能的影响;通过改进传统磁流变阻尼器活塞头结构,将磁流变阀内置于阻尼器内,设计了一种内置阀式磁流变阻尼器,阐述了内置阀式磁流变阻尼器的结构与工作原理;对阻尼器的磁路进行了简化,并利用磁路欧姆定律对其进行了磁路分析;根据磁流变阻尼器的工作模式,建立了内置阀式磁流变阻尼器的阻尼力数学模型;利用有限元软件ANSYS对阻尼器的电磁特性进行了仿真分析,得出了不同电流下液流通道内磁感应强度的分布情况;结合阻尼力数学模型,利用MATLAB软件对阻尼器的动力性能进行了仿真分析;为验证阻尼器设计的合理性,搭建试验台对阻尼器的动力性能进行了测试分析,并将试验与仿真结果进行对比。研究结果表明:仿真与试验结果具有较好的一致性;不同外界激励与速度变化对输出阻尼力影响较小,内置阀式磁流变阻尼器能在不同工况下输出稳定的阻尼力;输出阻尼力与阻尼可调系数近乎线性随励磁电流增长;当电流为1.2 A时,输出阻尼力高达7.521 kN,阻尼可调系数可达9.7。可见,内置磁流变阀结构可在受限体积下有效延长阻尼通道长度,使磁流变阻尼器输出较高的阻尼力,且具备较宽的阻尼可调范围。

关 键 词:车辆工程   磁流变阻尼器   内置磁流变阀   结构设计   仿真分析   动力性能
收稿时间:2020-12-26

Effect of inner magnetorheological valve on dynamic performance of magnetorheological damper
HU Guo-liang, DENG Ying-jun, FENG Hai-bo, LI Gang. Effect of inner magnetorheological valve on dynamic performance of magnetorheological damper[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 289-299. doi: 10.19818/j.cnki.1671-1637.2021.03.021
Authors:HU Guo-liang  DENG Ying-jun  FENG Hai-bo  LI Gang
Affiliation:Key Laboratory of Conveyance and Equipment of Ministry of Education, East China Jiaotong University, Nanchang 330013, Jiangxi, China
Abstract:To improve the output damping force of the damper when the structure size was limited, a magnetorheological (MR) damper was used as the object, and the influence of the inner MR valve structure on the dynamic performance of the MR damper was studied. By improving the piston head structure of the traditional MR damper, an MR valve was built into the damper, an MR damper with an inner valve was designed, its structure and working principle were described. Meanwhile, the magnetic circuit of the damper was reasonably simplified, and the magnetic circuit was analyzed based on Ohm's law. According to the working mode of the MR damper, a mathematical model of the damping force for the MR damper with an inner valve was established. The electromagnetic characteristics of the damper were simulated by using the ANSYS, and the distributions of the magnetic flux densities in the flow channel under different currents were obtained. To verify the rationality of the damper design, a test rig was built to evaluate the dynamic performance of the damper, and the results were compared with those obtained via simulation.Combined with the mathematical model of the damping force, the dynamic performance of the damper was simulated and analyzed by using the MATLAB. Analysis results reveal that the simulation and experimental results were consistent with each other. The various external excitations and velocities have no significant influence on the output damping force. An MR damper with an inner valve can output a stable damping force under different working conditions. The output damping force and the corresponding damping adjustable coefficient increase almost linearly with the excitation current. When the current is 1.2 A, the output damping force reaches 7.521 kN, with the damping adjustable coefficient being 9.7. Therefore, the inner MR valve structure can effectively extend the length of the damping channel under a limited volume, so that the MR damper can output a higher damping force, which provides a wider range of damping adjustment. 1 tab, 18 figs, 30 refs. 
Keywords:vehicle engineering  MRD  inner MR valve  structure design  simulation analysis  dynamic performance
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号