首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应多尺度形态学分析的车轮扁疤故障诊断方法
引用本文:李奕璠, 刘建新, 林建辉, 李忠继. 基于自适应多尺度形态学分析的车轮扁疤故障诊断方法[J]. 交通运输工程学报, 2015, 15(1): 58-65. doi: 10.19818/j.cnki.1671-1637.2015.01.008
作者姓名:李奕璠  刘建新  林建辉  李忠继
作者单位:1.西南交通大学 峨眉校区机械工程系,四川 峨眉 614202;;2.西南交通大学 牵引动力国家重点实验室,四川 成都 610031;;3.中国中铁二院工程集团有限责任公司 科学技术研究院,四川 成都 610031
基金项目:国家自然科学基金项目51375403 中央高校基本科研业务费青年教师百人计划项目2682014BR001EM
摘    要:建立了56自由度车辆动力学模型与车轮扁疤模型, 计算了车辆的动态响应。车辆的振动信息往往受到轨道不平顺和车速波动等因素的影响, 为了能在强噪声背景下有效提取轮轨冲击特征, 提出了自适应多尺度形态学滤波分析方法, 研究了车轮扁疤引起的轴箱振动特征, 分析了轨道激扰和车辆运行速度对车轮扁疤故障诊断效果的影响。仿真结果表明: 在100、150、200km·h-1的车速和美国五级谱、三级谱的激扰下, 分别使用7个和9个尺度的结构元素进行形态学滤波, 正确地识别出10、15、20Hz车轮扁疤故障频率。实测结果表明: 当车速为40km·h-1时, 使用7个尺度的结构元素进行形态学滤波, 提取出了2 Hz的故障频率, 此频率与理论故障频率相对应, 诊断结果可靠。

关 键 词:车辆工程   车轮扁疤   故障诊断   多尺度形态学滤波
收稿时间:2014-07-08

Fault diagnosis method of railway vehicle with wheel flat based on self-adaptive multi-scale morphology analysis
LI Yi-fan, LIU Jian-xin, LIN Jian-hui, LI Zhong-ji. Fault diagnosis method of railway vehicle with wheel flat based on self-adaptive multi-scale morphology analysis[J]. Journal of Traffic and Transportation Engineering, 2015, 15(1): 58-65. doi: 10.19818/j.cnki.1671-1637.2015.01.008
Authors:LI Yi-fan  LIU Jian-xin  LIN Jian-hui  LI Zhong-ji
Affiliation:1. E'mei Campus Department of Mechanical Engineering, Southwest Jiaotong University, E'mei 614202, Sichuan, China;;2. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, Sichuan, China;;3. Institute of Science and Technology, China Railway Eryuan Engineering GroupCo., Ltd., Chengdu 610031, Sichuan, China
Abstract:A vehicle system dynamics model with 56 degrees of freedom and a wheel flat model were set up to calculate railway vehicle dynamic responses.The vibration information of vehicle was often influenced by various interferences, such as track irregularity and vehicle speed alteration.In order to effectively extract the wheel-track impact features from strong background noises, a self-adaptive multi-scale morphology filtering analysis algorithm was proposed to study the axle box vibration characteristics caused by wheel flat.The influences of track irregularity and vehicle running speed on the fault diagnosis result of axle box were discussed.Simulation result shows that the fault frequencies of 10, 15, 20 Hz are obtained by using morphology filter based on 7-scale and 9-scale structural elements at the speeds of 100, 150, 200km·h-1 with the American fifth grade and third grade track irregularities.Test result demonstrates that the fault frequency of 2 Hz is obtained by using morphology filter based on 7-scale structural element atthe speed of 40km·h-1, which is corresponding to the theoretic frequency of wheel flat, so diagnosis result is reliable.
Keywords:vehicle engineering  wheel flat  fault diagnosis  multi-scale morphology filter
本文献已被 CNKI 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号