首页 | 本学科首页   官方微博 | 高级检索  
     

考虑时空修正的轨道交通封站短时客流预测方法
引用本文:许心越, 吴宇航, 张英男, 王雪琴, 刘军. 考虑时空修正的轨道交通封站短时客流预测方法[J]. 交通运输工程学报, 2021, 21(5): 251-264. doi: 10.19818/j.cnki.1671-1637.2021.05.021
作者姓名:许心越  吴宇航  张英男  王雪琴  刘军
作者单位:1.北京交通大学 轨道交通控制与安全国家重点实验室,北京 100044;;2.武汉大学 数学与统计学院,湖北 武汉 430072;;3.东南大学 数学学院,江苏 南京 211189
基金项目:国家自然科学基金项目71871012北京市自然科学基金项目9212014轨道交通控制与安全国家重点实验室自主研究课题RCS2020ZT005
摘    要:为了实现封站情况下轨道交通短时客流的精准预测和探索客流的变化机理,提出了一种考虑时空修正的融合动态因子模型(DFM)和支持向量机(SVM)的短时客流预测方法(DFM-SVM); 利用符号聚合近似方法(SAX)与动态时间规整(DTW)相结合的算法(SAX-DTW)识别受封站影响的时空范围,利用DFM预测常态下的短时客流,利用SVM提取和处理受封站影响车站与时段客流量的非线性特征,对受影响车站与时段的客流量进行修正; 以北京地铁封站情景下车站的进站量预测为例,验证方法的有效性。研究结果表明: 与既有SAX相比,提出的SAX-DTW不仅能全面考虑到客流数量和客流趋势的变化,还能更准确地识别出多个车站的异常时段; 与传统DFM相比,DFM-SVM能显著降低各车站的预测残差,其中奥体中心车站的预测残差降低约60%;与基线模型霍尔特-温特(Holt-Winters)、SVM、门控循环单元(GRU)和长短期记忆(LSTM)相比,在整体客流量预测效果方面,提出的DFM-SVM在其均方根误差方面分别降低43.39%、70.00%、33.18%和70.83%,平均绝对误差分别降低43.72%、67.17%、28.98%和57.08%;在单个车站的客流量预测效果方面,提出的DFM-SVM在均方根误差和平均绝对误差方面有70%的车站均低于其他基准模型。可见,提出的DFM-SVM能够捕捉封站影响客流的非线性关系,极大提升了客流预测精度,能够为运营管理者提供可靠的客流预警信息与决策依据。

关 键 词:轨道交通   封站   短时客流预测   封站范围识别   动态因子模型   客流时空修正
收稿时间:2021-05-21

Short-term passenger flow forecasting method of rail transit under station closure considering spatio-temporal modification
XU Xin-yue, WU Yu-hang, ZHANG Ying-nan, WANG Xue-qin, LIU Jun. Short-term passenger flow forecasting method of rail transit under station closure considering spatio-temporal modification[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 251-264. doi: 10.19818/j.cnki.1671-1637.2021.05.021
Authors:XU Xin-yue  WU Yu-hang  ZHANG Ying-nan  WANG Xue-qin  LIU Jun
Affiliation:1. State Key Lab of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China;;2. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, Hubei, China;;3. School of Mathematics, Southeast University, Nanjing 211189, Jiangsu, China
Abstract:To realize the accurate prediction of the short-term passenger flow of rail transit and explore the changing mechanism of passenger flow under the station closure, a short-term spatio-temporal corrected passenger flow forecasting method considering dynamic factor model (DFM) and support vector machine (SVM) under the station closure was developed and denoted by DFM-SVM. A hybrid model combining symbolic aggregation approximation (SAX) and dynamic time warping (DTW) denoted by SAX-DTW was proposed to identify the spatio-temporal ranges of the affected stations. DFM was developed to forecast the short-term passenger flow under the normal scenario based on the historical data. SVM was developed to extract and process the nonlinear characteristics of the passenger flows at the affected stations and time periods and used to correct the correspondingly affected passenger flows. The validity of the method was verified by an example of the inbound volume prediction at the Beijing Subway Station under the station closure. Research results show that compared with the SAX, the proposed SAX-DFM not only comprehensively considers the changes in the number and trend of passenger flow, but also identifies the abnormal segments of several stations according to the case study more accurately. Compared with the traditional DFM, the proposed DFM-SVM can significantly reduce the forecasting residual errors of passenger flows at each station. Taking the Olympic Sports Center Station as an example, the residual error reduces by about 60%. In terms of overall passenger flow prediction of the whole stations, the proposed DFM-SVM reduces the root mean square errors by 43.39%, 70.00%, 33.18% and 70.83%, respectively, and the mean absolute errors by 43.72%, 67.17%, 28.98% and 57.08%, respectively, compared with the baseline models such as Holt-Winters, SVM, gate recurrent unit (GRU), and long short-term memory (LSTM). In terms of the passenger volume prediction at a single station, the proposed DFM-SVM can reduce the root mean square errors and mean absolute errors at about 70% stations compared with other benchmark models. Therefore, the proposed DFM-SVM can capture the nonlinear feature of passenger flow affected by the station closure, which greatly improves the prediction accuracy and provides reliable passenger flow's early warning information and decision-making basis for operation managers. 4 tabs, 9 figs, 30 refs. 
Keywords:rail transit  station closure  short-term passenger flow forecasting  range identification under station closure  dynamic factor model  passenger flow spatio-temporal modification
本文献已被 万方数据 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号