飞机牵引滑行入港安全运动路径生成及其轨迹跟踪控制方法 |
| |
引用本文: | 孙艳坤,杨慧,张威,秦嘉浩. 飞机牵引滑行入港安全运动路径生成及其轨迹跟踪控制方法[J]. 交通信息与安全, 2022, 40(5): 91-101. DOI: 10.3963/j.jssn.1674-4861.2022.05.010 |
| |
作者姓名: | 孙艳坤 杨慧 张威 秦嘉浩 |
| |
作者单位: | 1.中国民航大学航空工程学院 天津 300300 |
| |
基金项目: | 国家自然科学基金民航联合基金重点项目U2033208中央高校基本科研业务费项目3122020031 |
| |
摘 要: | 针对飞机紧急降落后无法继续利用自身动力滑行入港场景,研究使用牵引车牵引其滑行入港的方式,考虑牵引滑入时机轮与机场跑道及滑行道边缘的安全净距,分别提出适用于机型-机场匹配时的牵引车-飞机系统的铰接点过中心线(HPOC)法和不匹配时的飞机主起落架几何中心过中心线(GCOC)法,并基于2种方法建立运动学模型,在净距及飞机前轮转角约束下对系统转弯滑行入港运动进行轨迹规划。基于GCOC法建立连续非线性系统的轨迹跟踪模型,通过线性二次调节器(LQR)对不同权重系数及存在初始偏差的轨迹跟踪问题进行了研究。结果表明:牵引车以HPOC法牵引飞机在与其机型不匹配的机场滑行入港时,机轮会发生碰撞危险;而采用GCOC法时其运动轨迹可以满足跑道及滑行道边缘的安全净距要求。在对系统进行轨迹跟踪控制时,当将飞机主起落架几何中心的横、纵坐标权重系数Q1、Q2及表示飞机姿态的角度权重系数Q3均设为100,而表示牵引车姿态的角度权重系数Q4设为0时,即:Q=(100,100,100,0),该方法可将实际牵引滑行入港轨迹与参考轨迹的偏差保持在0.05~0.1 m以内,且能够在10 s左右抑制系统状态变量误差,并使控制变量达到稳定;同时能够在12 s左右修正系统的初始偏差,相较于单机偏差修正的10 s,具有可接受的效果。
|
关 键 词: | 机场地面运行 牵引滑行系统 路径仿真 运动学模型 轨迹跟踪 |
收稿时间: | 2022-04-05 |
A Method for Safe Moving Paths and Tracking & Control of the Trajectory of Towed Taxiing-in Aircrafts |
| |
Affiliation: | 1.Aeronautical Engineering College, Civil Aviation University of China, Tianjin 300300, China2.Aviation Ground Special Equipment Research Base, CAAC, Tianjin 300300, China3.Key Laboratory of Smart Airport Theory and System, CAAC, Tianjin 300300, China |
| |
Abstract: | Under the circumstance that an aircraft cannot use its own power to taxi into a port after an emergency landing, towing the aircraft to the port using an aircraft tractor is necessary. Considering the safety clearance between aircraft wheels and airport runway, a hinge point over centerline(HPOC)method for the scenarios where the type of aircraft matches the airport category, and a geometric center over centerline(GCOC)method for the scenarios where the type of aircrafts does not match the airport category, is proposed, respectively. Based on these two methods, a dynamics model of the system is developed. Under the constraints of safety clearance and the aircraft's front angle, trajectory planning of the tractor-aircraft system is carried out. Based on the GCOC method, a continuous nonlinear trajectory tracking model is developed. The trajectory tracking problem with different weights and initial deviations is studied using a linear quadratic regular(LQR)method. Study results show that on an unmatched airport runway, when the tractor-aircraft system is taxiing in using the HPOC method, the wheels of the aircraft would potentially collide with. In contrast, the GCOC method can be used to meet the requirement of the minimum distance between the wheels of aircrafts and the edge of airport runways and taxiways. In the process of trajectory tracking and control for the system, when the weights for the horizontal and vertical coordinates of the geometric center of the aircraft main landing gear(Q1 and Q2), and the angle representing the attitude of the aircraft(Q3)are set to 100, and that for the angle representing the attitude of the tractor(Q4)is set to 0, that is, Q=(100, 100, 100, 0), the deviations between the actual and the reference trajectory are found to be between 0.05 and 0.1 m. The method can control the errors of the variables for measuring the system state within about 10 s and thus ensure the system maintains a stable state. Correction of the initial deviation can be done within 12 s, and the time span for the correction is acceptable compared to the time required(10 s)for the correction under the scenarios where the aircraft is taxiing in alone. |
| |
Keywords: | |
|
| 点击此处可从《交通信息与安全》浏览原始摘要信息 |
|
点击此处可从《交通信息与安全》下载免费的PDF全文 |
|