首页 | 本学科首页   官方微博 | 高级检索  
     

面向低速清扫车的信息融合车辆跟踪方法
引用本文:熊璐,李志强,姚杰. 面向低速清扫车的信息融合车辆跟踪方法[J]. 中国公路学报, 2019, 32(6): 61-70. DOI: 10.19721/j.cnki.1001-7372.2019.06.006
作者姓名:熊璐  李志强  姚杰
作者单位:1. 同济大学 汽车学院, 上海 201804;2. 同济大学 新能源汽车工程中心, 上海 201804;3. 上海汽车集团股份有限公司, 上海 201800
基金项目:上海市科学技术委员会科研项目(16DZ1100701,17DZ1100202);国家重点研发计划项目(2016YFB0100901)
摘    要:交通参与者运动的准确跟踪与预测对智能车行为决策的有效性至关重要。传统运动目标的跟踪系统多采用单一传感器,难以保证数据的精度与可信度。为提高系统的鲁棒性与可靠性,设计一种融合毫米波雷达和相机的目标跟踪方案,该方案针对多目标的特征级信息进行融合。首先,考虑低速行驶的自动驾驶清扫车所处环境杂波较多,方案选择基于IMM/JPDA的多目标跟踪方法估计局部航迹。为降低JPDA数据关联的计算复杂度,结合基于马氏距离构造的椭圆关联门和基于车辆非完整性约束构造的扇形关联门,实现关联门的自适应调整,减少关联杂波的干扰。其次,结合传感器的配置与特性,对目标的航迹状态进行空间对准和时间对准,按照航迹点间的欧氏距离和互协方差选择融合模式,进行局部航迹融合。最后,为验证多目标跟踪和航迹融合方法的有效性与实用性,分别设计基于MATLAB/PreScan环境的仿真试验和基于智能清扫车平台的实车试验。研究结果表明:在横、纵方向上,融合后的系统状态都比单一传感器的估计状态更为准确,融合结果对单一传感器的估计误差有35%以上的提升;实车试验证明,该方案能有效融合ESR毫米波雷达和Mobileye单目前视相机的状态估计信息,能基本正确地跟踪目标和估计航迹;融合状态的横、纵向误差都在可接受范围以内,且融合状态比单一传感器的估计波动更小。

关 键 词:汽车工程  车辆跟踪  多传感器信息融合  自动驾驶汽车  低速清扫车  自适应关联门  
收稿时间:2019-01-09

Vehicle Tracking Method Based on Information Fusion for Low-speed Sweeper Vehicles
XIONG Lu,LI Zhi-qiang,YAO Jie. Vehicle Tracking Method Based on Information Fusion for Low-speed Sweeper Vehicles[J]. China Journal of Highway and Transport, 2019, 32(6): 61-70. DOI: 10.19721/j.cnki.1001-7372.2019.06.006
Authors:XIONG Lu  LI Zhi-qiang  YAO Jie
Affiliation:1. School of Automotive Studies, Tongji University, Shanghai 201804, China;2. Clean Energy Automotive Engineering Center, Tongji University, Shanghai 201804, China;3. SAIC Motor Co., Ltd., Shanghai 201800, China
Abstract:Accurate tracking and prediction of traffic participant objects is critical to the effectiveness of smart car behavior decisions. The traditional tracking system of maneuvering targets utilizes a single sensor, which has difficulties ensuring the accuracy and credibility of tracking data. To improve the robustness and reliability of a tracking system, a target tracking scheme that combines millimeter wave radar and camera has been designed. The scheme integrates the feature-level information of multiple targets. First, considering the cluttering environment of a low-speed self-driving sweeper vehicle, a multi-target tracking method based on interacting multiple modules/joint probability data association (IMM/JPDA) was used to estimate the local track. To reduce the computational complexity of the JPDA, we combined the ellipse correlation gate constructed according to Mahalanobis distance with the sector-related gate based on vehicle non-integrity constraints, which can adjust the association gate adaptively and reduce the interference of the associated clutter.Second, the target tracks were combined with the configuration and characteristics of the sensor and were then spatially and temporally aligned. A fusion mode was selected according to the Euclidean distance and the cross-covariance between the track points to perform local track fusion. Finally, to verify the validity and practicability of the multi-target tracking and track fusion methods, simulation experiments based on a MATLAB/PreScan environment and a real vehicle test based on an intelligent sweeper vehicle platform were designed. Simulation results show that in both horizontal and vertical directions, the system state after fusion is more accurate than the estimation state of a single sensor, and the fusion result shows an improved estimation error of more than 35% as compared with a single sensor. The vehicle test proved that this scheme can effectively integrate the state estimation information of an ESR millimeter wave radar and a Mobileye monocular camera and can basically track and estimate target tracks. Both horizontal and longitudinal errors of the fused state are all within an acceptable range, and the fused track is less fluctuant than the tracks of a single sensor.
Keywords:automotive engineering  maneuvering target tracking  multi-sensor information fusion  self-driving vehicle  low-speed sweeper vehicle  adaptive associated gate  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国公路学报》浏览原始摘要信息
点击此处可从《中国公路学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号