首页 | 本学科首页   官方微博 | 高级检索  
     

悬浮隧道整体冲击响应模拟方法及试验验证
引用本文:杨赢,项贻强,陈政阳,林亨. 悬浮隧道整体冲击响应模拟方法及试验验证[J]. 中国公路学报, 2019, 32(1): 127-134
作者姓名:杨赢  项贻强  陈政阳  林亨
作者单位:1. 浙江大学建筑工程学院, 浙江杭州 310058;2. 绍兴文理学院土木工程学院, 浙江绍兴 312000
基金项目:国家自然科学基金项目(51279178,51541810);中央高校基本科研业务费专项资金项目(2018QNA4032)
摘    要:为研究水下悬浮隧道管体在冲击荷载下的整体动力响应,提出对应的简化模拟方法,在有限元软件ABAQUS中结合自定义幅值(UAMP)子程序进行了冲击荷载作用下考虑流体作用的悬浮隧道整体响应分析。基于Morison方程,将流体作用分为非线性阻力和附加质量力。首先,以分段线荷载的形式表示流体阻力沿管体纵向的不均匀分布。在UAMP子程序中采用FORTRAN语言编写与管体运动速度相关的流体阻力幅值计算程序。通过在ABAQUS与UAMP子程序之间管体运动速度和流体阻力幅值的交互传递,实现了荷载大小同时随时间和空间变化的非线性流体阻力加载。其次,考虑与管体加速度相关的流体附加质量力,其幅值在ABAQUS中通过定义浸没式截面自动计算。最后,进行悬浮隧道整体模型冲击试验,采用提出的模拟方法对试验典型工况进行分析,并将计算结果与试验实测值进行对比。结果表明:提出的建模方法能较好反映悬浮隧道结构动力特性;随着冲击强度的增大,冲击点处管体最大位移和加速度增大,且峰值均出现在第1个运动周期内;采用简化模拟方法分析所得的管体位移和加速度响应与试验结果基本一致;该模拟方法的计算精度与流体阻力分段线荷载的分段长度有关,当分段长度小于管体总长的1/20时,分析结果趋于稳定。因此,基于UAMP子程序的流体作用的简化数值模拟方法能较好地用于悬浮隧道整体冲击响应分析,误差在工程允许范围内。

关 键 词:隧道工程  悬浮隧道  数值模拟  UAMP子程序  冲击试验  流体阻力  
收稿时间:2018-01-15

Simulation Method for Global Impact Dynamic Response of Submerged Floating Tunnel and Experimental Verification
YANG Ying,XIANG Yi-qiang,CHEN Zheng-yang,LIN Heng. Simulation Method for Global Impact Dynamic Response of Submerged Floating Tunnel and Experimental Verification[J]. China Journal of Highway and Transport, 2019, 32(1): 127-134
Authors:YANG Ying  XIANG Yi-qiang  CHEN Zheng-yang  LIN Heng
Affiliation:1. School of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, Zhejiang, China;2. School of Civil Engineering, Shaoxing University, Shaoxing 312000, Zhejiang, China
Abstract:In order to analyze the global dynamic response of the submerged floating tunnel (SFT) under impact load and propose the corresponding simplified simulation method, the analysis of the global response of the SFT under impact load considering the effect of the fluid action was carried out using the finite element software ABAQUS with a user-defined amplitude (UAMP) subroutine. Based on the Morison equation, the fluid action was divided into nonlinear hydraulic resistance and added mass force. Firstly, the non-uniform distribution of hydraulic resistance along the longitudinal direction of the tube was expressed in the form of piecewise line loads. In the UAMP subroutine, FORTRAN was used to compile the program for calculating the amplitude of the hydraulic resistance related to the velocity of tube motion. Through the interactive transfer of tube velocity and hydraulic resistance amplitude data between ABAQUS and the UAMP subroutine, the action of nonlinear hydraulic resistance changing with time and space was realized. Secondly, the added mass force associated with tube acceleration was considered, the amplitude of the added mass force was calculated automatically by defining the fully-submerged section in ABAQUS. Finally, the impact test of the SFT model was conducted, and the typical test conditions were analyzed by the proposed simulation method. The simulation results were compared with the test values. The results show that the proposed modeling method can reflect the dynamic characteristics of the SFT well. With the increase of the impact strength, the maximum displacement and acceleration of the tube at the impact point increase, and the peak value appears in the first cycle of motion. The displacement and acceleration responses of the tube obtained by the simplified simulation method were consistent with the experimental results. The accuracy of the simulation method was related to the segment length of the piecewise line load of the hydraulic resistance. When the segment length was less than 1/20 of the total length of the tube, the analysis results tended to be stable. Therefore, the simplified numerical simulation method based on the UAMP subroutine can be used to analyze the global impact response of the SFT, and the error is within the allowable range of engineering.
Keywords:tunnel engineering  submerged floating tunnel  numerical simulation  UAMP subroutine  impact test  hydraulic resistance  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国公路学报》浏览原始摘要信息
点击此处可从《中国公路学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号