首页 | 本学科首页   官方微博 | 高级检索  
     

破舱倾覆船体扳正过程数值模拟
引用本文:潘德位, 林成新, 周兆欣, 孙玉强, 刘志杰. 破舱倾覆船体扳正过程数值模拟[J]. 交通运输工程学报, 2017, 17(5): 102-112.
作者姓名:潘德位  林成新  周兆欣  孙玉强  刘志杰
作者单位:1.山东交通学院航海学院, 山东 威海 264209;;2.大连海事大学交通运输装备与海洋工程学院, 辽宁 大连 116026
基金项目:交通运输部建设科技项目2013328225080 高等学校博士学科点专项科研基金项目20122125120013 国家科技支撑计划项目2014BAK05B06
摘    要:
考虑了破舱倾覆船体浮性和稳性, 研究了船体在扳正过程中空间位置和受力状态; 采用欧拉旋转变换方法建立了船体空间力学平衡方程, 根据船舶静力学原理, 得到了破舱倾覆船体稳性和扳正力数学模型; 根据伯努利定理计算了破舱进水量及其对船体重心和浮心位置的影响; 利用GHS软件模拟了破舱倾覆船体的扳正过程, 求解了其最大扳正力和进水量, 计算了船体纵向6个位置的剪力、弯矩和扭矩。计算结果表明: 在最初扳正时, 破舱进水导致倾覆船体扳正力矩降低了130.312 MN·m, 说明破舱进水降低了倾覆船体的稳性, 可以减小最初扳正力, 降低了扳正难度; 在扳正后期时, 破舱进水产生的倾斜力矩最大值为163.594 MN·m, 说明破舱进水降低了船体的稳性, 提高了扳正难度, 仍需要施加较大的扳正力平衡船体; 船体纵向强度分布会随着扳正力和破舱进水量的变化而改变, 多点扳正船体的最大扳正力小于单点最大扳正力的40%, 最大扭矩小于单点扭矩的50%;方案1~4的最大进水量分别为6 269.76、6 781.01、5 830.76、6 653.33t, 因此, 合理布置扳正点的位置, 单点扳正(方案1~3) 的进水量小于多点扳正(方案4)。

关 键 词:船舶工程   沉船打捞   倾覆船体   扳正方案   扳正力   GHS
收稿时间:2017-06-10

Numerical simulation of righting process for damaged-capsized hull
PAN De-wei, LIN Cheng-xin, ZHOU Zhao-xin, SUN Yu-qiang, LIU Zhi-jie. Numerical simulation of righting process for damaged-capsized hull[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 102-112.
Authors:PAN De-wei  LIN Cheng-xin  ZHOU Zhao-xin  SUN Yu-qiang  LIU Zhi-jie
Affiliation:1. Navigation College, Shandong Jiaotong University, Weihai 264209, Shandong, China;;2. Transportation Equipment and Ocean Engineering College, Dalian Maritime University, Dalian 116026, Liaoning, China
Abstract:
The buoyancy and stability of damaged-capsized hull were considered, and the spatial position and mechanical of hull state were studied during righting process.The spatial mechanical equilibrium equation of hull was established by Euler rotation transformation method.The stability and righting mathematical model of hull were derived by using the hydrostatical theory of ship.The flooding quantity was calculated according to Bernoulli theorem and its impact on the positions of barycenter and buoyant centre were obtained.The righting process of damagedcapsized hull was simulated by using General HydroStatics (GHS) software, the maximum righting force and flooding quantity were solved, and the shear force, bending moment, torque of six longitudinal positions along the hull were calculated.Computation result shows that the righting moment of damaged-capsized hull decreases by 130.312 MN·m in the early righting process because water floods damaged cabins.So, the flooding water decreases the stability ofdamaged-capsized hull and the righting force, which results in the decrease of righting difficulty.In the later righting process, the maximum tilting moment of damaged-capsized hull is163.594 MN·m because water floods damaged cabins.Thus, flooding water decreases the stability of hull, increases the righting difficulty, and the larger righting force is needed to balance the hull.The longitudinal strength distribution of hull changes in response to the righting force and flooding quantity.The maximum force and torque of multi-point righting are less than40% and 50% of the corresponding values of single-point righting, respectively.The maximum flooding quantities in Schemes 1-4 are 6 269.76, 6 781.01, 5 830.76 and 6 653.33 t, respectively, which shows that the flooding quantities of single-point righting (Schemes 1-3) are less than the flooding quantity of multi-point righting (Scheme 4) through reaonably arranging the positions of righting points.
Keywords:ship engineering  wreck salvage  capsized hull  righting scheme  righting force  GHS
本文献已被 CNKI 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号