首页 | 本学科首页   官方微博 | 高级检索  
     

具有输入时滞的二轮自平衡车自适应滑模控制
引用本文:薛晗, 邵哲平, 方琼林, 马峰. 具有输入时滞的二轮自平衡车自适应滑模控制[J]. 交通运输工程学报, 2020, 20(2): 219-228. doi: 10.19818/j.cnki.1671-1637.2020.02.018
作者姓名:薛晗  邵哲平  方琼林  马峰
作者单位:1.集美大学航海学院, 福建 厦门 361021;;2.集美大学船舶辅助导航技术国家地方联合工程研究中心, 福建 厦门 361021
基金项目:集美大学交通运输工程学科高层次课题研究培育基金项目;福建省自然科学基金;国家自然科学基金
摘    要:
对具有输入时滞的二轮自平衡车系统, 设计了一种自适应滑模控制算法; 采用拉格朗日函数建立二轮自平衡车系统的动力学数学模型, 并在系统模型中考虑实际中存在输入时滞, 以及在处理输入时滞时所引入的未知扰动; 对变换后的输入矩阵做奇异值分解, 进一步设计了对扰动参数具有自适应估计能力的自适应滑模控制器; 基于Lyapunov稳定性理论, 保证了闭环系统鲁棒渐近稳定; 试验采用陀螺仪MPU-6050以及加速度传感器构成小车姿态检测装置。分析结果表明: 当控制参数较小时, 系统的超调量较小, 然而系统的调节时间较长; 当控制参数较大时, 系统产生了较明显的超调量, 然而系统的调节时间缩短了; 当外加扰动较小时, 车体速度变化小于0.08 m·s-1, 倾角角速度变化小于0.6°·s-1; 当外加扰动较大时, 车体速度变化小于0.10 m·s-1, 倾角角速度变化小于0.8°·s-1; 初始倾角为5°时, 车体速度保持在0.005 m·s-1范围内, 倾角角速度保持在0.022°·s-1范围内; 初始倾角为10°时, 车体速度保持在0.007 m·s-1范围内, 倾角角速度保持在0.031°·s-1范围内。可见, 自适应滑模控制算法能在引入适量干扰和不同初始车体倾角的情况下, 使小车自主调整并迅速恢复稳定状态。

关 键 词:公路运输   自平衡车   滑模控制   时滞   自适应控制   鲁棒性
收稿时间:2019-09-07

Adaptive sliding mode control for two-wheeled self-balancing vehicle with input delay
XUE Han, SHAO Zhe-ping, FANG Qiong-lin, MA Feng. Adaptive sliding mode control for two-wheeled self-balancing vehicle with input delay[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 219-228. doi: 10.19818/j.cnki.1671-1637.2020.02.018
Authors:XUE Han  SHAO Zhe-ping  FANG Qiong-lin  MA Feng
Affiliation:1. School of Navigation, Jimei University, Xiamen 361021, Fujian, China;;2. National-Local Joint Engineering Research Center for Marine Navigation Aids Services, Jimei University, Xiamen 361021, Fujian, China
Abstract:
An adaptive sliding mode control algorithm was designed for two-wheeled self-balancing vehicle with input delay. The Lagrange equation was used to establish the dynamic mathematical model of two-wheeled self-balancing vehicle system. In the system model, the input delay in practice environment and the unknown disturbance in dealing with the input delay were considered. After the singular value decomposition of transformed input matrix, an adaptive sliding mode controller with adaptive estimation ability for the disturbance parameters was designed. Based on the Lyapunov stability theory, the robust asymptotic stability of closed-loop system was guaranteed. In the experiment, the gyroscope MPU-6050 and acceleration sensor were used to construct the vehicle attitude detection device.Analysis result shows that when the control parameters are small, the overshoot of the system is small, while the regulation time of the system is long. When the control parameters are large, the system has a more obvious overshoot, while the regulation time of the system is shortened. The velocity range is less than 0.08 m·s-1 and the angular velocity range is less than 0.6°·s-1 when the vehicle body is subjected to a small disturbance. The velocity range is less than 0.1 m·s-1 and the angular velocity range is less than 0.8°·s-1 when the vehicle body is subjected to a large disturbance. From the initial inclination of 5°, the velocity of vehicle is within 0.005 m·s-1 and the angular velocity of vehicle is within 0.022°·s-1. While from the initial inclination of 10°, the velocity of vehicle is within 0.007 m·s-1 and the angular velocity of vehicle is within 0.031°·s-1. So the adaptive sliding mode control algorithm can make the vehicle adjust itself and quickly return to a stable state under an appropriate interference and different initial vehicle inclinations. 
Keywords:road transportation  self-balancing vehicle  sliding mode control  delay  adaptive control  robustness
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号