首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 635 毫秒
1.
CFD simulations of spray tip penetration with the standard KIVA3V, ‘original gas jet’ and ‘Normal gas jet profile with breakup length formula’ (NGJBL) spray models were performed to investigate the effects of nozzle orifice size and ambient gas density combinations on the spray penetration. The accuracy of the CFD simulation results was estimated by comparing them with available experimental data. The ambient gas density was varied in 12 kg/m3 intervals from 12 to 69 kg/m3 for each nozzle orifice diameter. The nozzle orifice diameters used were 119, 140, 183 and 206 mm. A total of 20 cases in the CFD simulations were considered with combinations of the 4 nozzle orifice diameters and 5 ambient gas densities. CFD simulations with the NGJBL spray model were more accurate than those with either the standard KIVA3V or gas jet spray models as the nozzle orifice diameter and ambient gas density was increased. The NGJBL and original gas jet model is more effective in predicting the spray tip penetration near the nozzle tip region.  相似文献   

2.
根据某重型车用环形风扇的实际风筒试验过程建立了该风扇风筒仿真模型,并将计算结果与试验数据进行了比较,验证了模型的可靠性.利用该模型对不同风扇的轴向伸入距离、径向间隙进行仿真分析.结果表明,轴向伸入距离和径向间隙对风扇性能的影响十分显著:该风扇轴向伸入距离为75 mm、径向间隙为25 mm是较合理的安装距离:不同的轴向伸入距离对径向间隙的要求是不同的.  相似文献   

3.
In diesel engine, spray penetration is usually changed by in-cylinder gas flow. Accurate prediction on diesel spray with gas flow is important to the optimal design of diesel fuel injection system. This paper presents a theory investigation focusing on the penetration of diesel spray with gas flow. In order to understand the effect of gas flow on the penetration of diesel spray, a one-dimensional spray model is developed from an idealized diesel spray, which is able to predict the spray behavior under different gas flow conditions. The ambient gas flow is simplified as ideal flow that has only constant flow velocity along x-axial and y-axial directions of spray. The x-axial and y-axial directions are respectively defined as along and vertical spray directions. The main assumption is that the y-axial direction gas flow has no effect on the penetration of spray along x-axial direction. The principles of conservation of mass and momentum are used in the derivation. Momentum of in-cylinder air flow is also taken into consideration. Validation of the model at stable condition is achieved by comparing model predictions with experimental measurements of diesel spray without gas flow from Naber's experiments. Furthermore, CFD simulations on penetration of diesel spray with gas flow were performed with the commercial code AVL-fire. The onedimensional model is validated by the penetration results with gas flow from CFD calculation. Results show that a reasonable estimation of the spray evolution can be obtained for both with and without ambient gas flow conditions.  相似文献   

4.
静力触探试验确定粉喷桩复合地基承载力研究   总被引:1,自引:0,他引:1       下载免费PDF全文
确定粉喷桩复合地基承载力,一般采用静载荷试验。文内通过对粉喷桩复合地基载荷试验与静力触探试验结果分析后,提出了一种利用静力触探试验确定粉喷桩复合地基承载力的方法。工程应用结果表明,该法可有效地预测粉喷桩复合地基承载力,但还需更多的工程实践进行验证。  相似文献   

5.
蔡少娌  许伯彦  梁夫友 《汽车工程》2004,26(4):397-400,429
数值模拟了从电喷天然气发动机喷射阀喷出的非稳态喷流的发展过程,并由纹影实验验证了解析方法的可行性。采用数值模拟的方法考察了天然气喷流贯穿距离与喷射压力和喷孔数的关系;以及喷射阀质量流量与喷射压力和环境压力的关系;为精确地控制天然气燃料喷射量提供了理论依据。最后数值模拟了进气歧管内天然气喷流的发展过程,探明了天然气喷射对发动机工作过程可能造成的影响。  相似文献   

6.
黄磊  范建国  唐协  方勇 《隧道建设》2018,38(Z1):97-103
在公路隧道建设过程中,施工机械产生的废气以及从隧道围岩渗漏出来的有毒有害气体会对施工安全造成一定的影响。针对米仓山公路隧道巷道式通风系统横通道附近瓦斯不能及时排出的问题,通过CFD数值模拟对横通道附近空气流动和危险气体的扩散规律进行研究。结果表明: 沿横通道向掌子面方向的部分区域存在风速小于0.5 m/s的危险区域。为达到消除危险区域的目的,提出增大隧道进口风速、增大风管出口风速和增设射流风机3种方法对横通道附近流场进行优化。通过对比分析发现: 增设射流风机是消除危险区域最有效的措施,并且当在进风隧道横通道前方50 m处设置射流风机时,可使得整个隧道中不存在危险区域。  相似文献   

7.
This paper proposed a quasi-dimensional combustion model from a new observed two-phase penetration and combustion phenomenon in diesel spray. In the model, fuel spray was divided into two of liquid and gas phase areas. Considering the phenomenon that separation of gas and liquid phase in diesel spray occurs during spray penetration, gas and liquid area of spray are discretized respectively. Liquid phase areas play important role in fuel mass transport, however gas phase areas are the main region for fuel combustion in the model. Fuel and air mixing rate of gas phase zone is the key for the calculation of combustion rate. Validation experiments are designed by using optimal Latin hypercube design method. Comparison of calculations and experiments show that the model is able to predict diesel engine performance at different engine speeds, loads, and injection pressure and timing, and provides guidance for the design of engines.  相似文献   

8.
利用高速摄影研究二甲基醚的喷雾特性   总被引:2,自引:1,他引:2  
李君  佐藤由雄  野田明 《汽车工程》2002,24(2):112-114,156
本文利用高速摄影技术在定容压力室中,通过6孔电磁喷射器,研究了二甲基醚(DME)的喷雾特性。结果表明,二甲基醚的喷雾射程随着定容压力室内气体压力的增加而减少;喷雾锥角则随和的升高而增大,在相同的条件下,二甲基 喷射锥角大于 喷射锥角;喷雾射程则低于柴油的喷雾射程。Hiroyasu喷雾射程的计算模型,通过适当的系数修正可以用于DME喷雾射程预测,由于DME喷雾射程和着火延迟期都比柴油短,在屐机缸内着火时刻,柴油的喷雾射程约为DME的2倍,从高速摄影的喷雾影像中可以清楚的看到,DME的蒸发速度明显比柴油快。  相似文献   

9.
根据公路桥、涵台背回填中粗砂密实度检测的室内模型试验,探讨了轻便触探试验数据与静力触探试验数据之间的关系,并建立了轻便触探锤击数N10与静力触探锥端阻力Qc之间的相关关系式,验证表明轻便触探与静力触探具有较好的相关性。  相似文献   

10.
基于单孔主动预燃室,研究了火焰射流的形成机理。在圆形自由紊动射流理论的基础上,提出了单孔主动预燃室点火的火焰射流贯穿距随时间变化的经验公式。该经验公式可以通过射流锥角、预燃室喷口直径和射流在预燃室喷口处的初速度预测射流贯穿距。通过主动预燃室的定容燃烧弹试验和CONVERGE仿真验证,该经验公式所预测的射流贯穿距和反向求得的射流初速度与实测值吻合,最大相对误差分别为6.92%和5.82%。认为此公式能够正确预测单喷孔主动预燃室的射流贯穿距,对于优化预燃室结构以实现更高效地点火,继而提升内燃机的理论热效率具有参考意义。  相似文献   

11.
天然气汽车是低污染燃料汽车,改装工艺相对简单。文章主要介绍了一种用PIC18F2420单片机实现对双燃料发动机燃气状态下喷气调节的方法,将喷气模块与原车ECU和氧传感器一起构成闭环控制系统,实现对燃气的精确调节,试验结果表明,将该系统装在CNG/汽车双燃料汽车上,通过利用原车ECU的控制策略。通过了国Ⅲ排放。  相似文献   

12.
利用高速摄影在定容弹内对缸内直喷汽油机多孔喷油器进行喷雾特性试验研究,揭示了直喷高速液体射流的喷雾特性(贯穿距、喷雾锥角)与无量纲数(韦伯数、雷诺数及气液密度比)之间的关系。结果表明,韦伯数和气液密度比对喷雾宏观特性有显著的影响,雷诺数对喷雾特性的影响不明显。  相似文献   

13.
超厚粉细砂地层组合压浆桩压浆效果试验   总被引:1,自引:0,他引:1  
为了研究超厚粉细砂地层中桩端、桩侧组合压浆效果,基于石首长江公路大桥工程中6根超长大直径钻孔灌注桩原位静载荷试验,通过对比分析组合压浆前、后钻孔灌注桩的试验结果,研究组合压浆对超长大直径钻孔灌注桩承载力性状、桩端阻力及桩侧摩阻力的影响。通过钻孔取芯、标准贯入试验分别对水泥浆液影响范围和桩基组合压浆的影响效果进行综合分析,得到该工程主桥试桩压浆前、后粉细砂土层侧阻力经验系数,建立压浆后侧摩阻力与压浆前标贯击数N的关系式。研究结果表明:与组合压浆前相比,组合压浆后的桩端阻力与桩侧摩阻力均有大幅度增加,且灌注桩极限承载力提高幅度为94.25%~151.51%,由此可见组合压浆的效果非常显著;组合压浆桩的承载性能明显优于桩端压浆桩,其对桩基的荷载传递特性产生了明显影响;钻孔取芯试验明确了水泥浆液在桩周和桩端以下一定范围的分布情况,证实了组合压浆的有效性;标准贯入试验结果表明组合压浆后桩侧土的标贯击数N明显提高,研究成果可直接运用于该大桥桩基设计,并可为类似超厚粉细砂地层中桥梁桩基工程提供参考。  相似文献   

14.
In the following paper, a numerical study of the atomization, vaporization and wall impingement processes of hollow-cone fuel spray from high-pressure swirl injectors under various ambient temperature conditions was carried out. Also, the availability of applied models and the effect of ambient temperature on spray characteristics is discussed. The Linearized Instability Sheet Atomization (LISA) model combined with the Aerodynamically Progressed Taylor Analogy Breakup (APTAB) model, the improved Abramzon model and the Gosman model are used to calculate the atomization, vaporization and wall impingement processes of hollow-cone fuel spray, respectively. Spray models are implemented with the modified KIVA code. The calculation results of the spray characteristics under two ambient temperatures, including spray tip penetration, spray structure and radial distance after spray-wall impingement are compared to the experimental results obtained by the Laser Induced Exciplex Fluorescence (LIEF) technique. The droplet size distribution, ambient gas velocity field, vapor phase distribution and fuel film mass generated by spray-wall impingement, measurements which are generally difficult to obtain by experimental methods, are also calculated and discussed. Quantitative discussions on the effect of the ambient temperature on the spray development process are conducted. It is shown that the applied models are applicable even in the high ambient temperature condition.  相似文献   

15.
射流点火是实现稳定的稀薄燃烧,大幅度提升发动机热效率的有效技术途径。该文利用设计的一种射流点火器,对气相射流点火(GJI)的燃烧开展研究,揭示了主动式射流点火(射流室内有补充燃料)和被动式射流点火(射流室内无补充燃料)的燃烧和排放特性。结果表明:相比于被动式射流点火,主动式射流点火将过量空气系数拓展至2.0,热效率提升1.5%;进一步引入废气再循环(EGR)后,热效率提升至44.5%。主动式射流点火时,最高热效率点NOx排放较被动式射流点火下降低66%,THC及CO排放的增加使燃烧效率降低3%;引入EGR后,NOx进一步降低79%,燃烧效率保持稳定在96%。  相似文献   

16.
Breakup modeling of a liquid jet in cross flow   总被引:3,自引:0,他引:3  
We propose a novel breakup model to simulate the catastrophic breakup regime in a supersonic cross flow. A developed model has been extended from an existing Kelvin-Helmholtz/Rayleigh-Taylor (K-H/R-T) hybrid model. A new mass reduction rate equation, which has critical effects on overall spray structure, is successfully adopted, and the breakup length, which is an important parameter in existing model, is replaced by the breakup initiation time. Measured data from the supersonic wind tunnel with a dimension of 762×152×127 mm was employed to validate the newly developed breakup model. A nonaerated injector with an orifice diameter of 0.5 mm is used to inject water into a supersonic flow prescribed by the momentum flux ratio of the liquid jet to free stream air, q 0 . The conservation-element and solution-element (CE/SE) method, a novel numerical framework for the general conservation law, is applied to simulate the supersonic compressible flow. The spray penetration height and average droplet size along with a spray penetration axis are quantitatively compared with data. The shock train flow structures induced by the presence of a liquid jet are further discussed.  相似文献   

17.
刘志方 《路基工程》2011,(2):138-140
针对水泥土搅拌桩的粉喷和湿喷两种工艺,分别进行了施工后不同龄期的桩身载荷试验,通过桩顶、桩间土的应力观测以及载荷试验测斜观测,对水泥土搅拌桩加固软土地基的效果进行分析,并对两种工艺的加固效果进行了对比。结果表明,在饱和软土地区,复合地基承载力粉喷桩明显高于湿喷桩,其成桩及加固效果前者好于后者。  相似文献   

18.
An experimental study has been performed on spray combustion and two-dimensional soot concentration in diesel (ULSD), GTL and GTL-biodiesel fuel jets under high-pressure, high-temperature quiescent conditions. Instantaneous images of the fuel jets were obtained with a high-speed camera. It was confirmed that by blending GTL with 20% rapeseed biodiesel, certain fuel properties such as kinematic viscosity, density, surface tension, volatility, lower heating value and others may be designed and improved to be more like those of conventional diesel fuel but with considerable decrease in the amount of sulfur, PAH, cold filter plugging point, etc. The results showed that the spray tip penetration increased and the spray cone angle decreased when 20% biodiesel fuel was added to GTL fuel. Autoignition of the GTL-biodiesel blend occurred slightly earlier than that of diesel fuel. Experiments under high-pressure, high-temperature conditions showed that higher injection pressure induced a lower soot formation rate. The integrated flame luminosity, which serves as an indicator of soot concentration in the fuel jet, was slightly higher for the GTL-biodiesel blend than for pure GTL fuel due to the slightly higher sulfur content of pure biodiesel fuel.  相似文献   

19.
为研究汽油机活塞内冷油腔在高转速下的振荡冷却效果,搭建了计算流体力学仿真模型,模拟研究了额定转速下内冷油腔的机油瞬态分布、壁面换热系数和换热速率,分析了机油喷射速度、喷孔直径、机油温度等喷射参数的影响,并采用Box-Behnken组合设计,以换热速率最大化为目标优化了喷射参数。结果表明,换热速率除了受喷射速度和机油温度的交互作用影响外,还与腔内充油率决定的机油振荡状况有关,并可与喷孔直径拟合成抛物线关系。  相似文献   

20.
《JSAE Review》1996,17(4):347-354
Generally speaking, it is very difficult to observe the growing process of large scaled vortices in a transient gas jet. The vortices have great effect on the mechanism of mixture formation between the jet itself and the surroundings. The objective of the study presented here is the clarification of this mechanism in both cases of a free jet and a jet impinging on a flat wall by means of the flow visualization of 21) image taken by thin sheet of laser light in the experiments and the numerical analysis by the discrete vortex method. The mechanism of the vortex growth and the coherent structure of vortices entraining the surroundings are observed in the case of the free jet. In the wall impinging jet, the structure inside the jet is divided into four regions, that is, free jet region, impingement region, wall jet region and wall jet vortex region. The results of the numerical analysis agree qualitatively well with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号