首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为实现燃料电池汽车在多信号灯场景下的节能驾驶,本文中提出一种基于分层凸优化的快速车速规划和能量管理方法。结合车辆静态氢耗图,运用动态规划获得车辆通过信号灯的最优绿灯窗口,并确定最优行驶路径的搜索区域。建立以车辆需求功率累计最小为优化目标求解车辆加速度的二次规划问题,并运用Matlab/OSQP求解器获取车辆最优行驶路径。根据最优行驶路径,采用基于交替方向乘子法的能量管理策略,实现各动力源输出功率的合理分配。针对9个信号灯场景的仿真结果表明,所提方法的电机工作点平均效率比智能驾驶员模型高10%,氢耗低45%。此外,该方法计算速度快,具备实时优化的潜力。  相似文献   

2.
智能交通系统技术的发展为进一步提高车辆驾驶性能带来了新的机遇。插电式混合动力汽车的生态驾驶涉及到3个问题,分别为如何利用动态交通信息对纵向行驶速度进行规划,动力电池SOC全局最优快速规划,以及动力系统实时能量管理。为此,本文中设计了一种结合通精度模型的兼顾计算效率与求解精度的分层式控制策略。上层控制融合了动态交通信号灯信息,通过对车辆行驶速度优化提高了驾驶舒适性,中层则通过对动力系统模型拟合近似,利用凸优化算法实现了SOC快速全局最优规划,为消除拟合模型产生的误差,下层则基于原始非线性模型,通过反馈控制,构建了一种自适应等效燃油消耗最小值策略(A-ECMS)。结果表明,车辆的驾驶舒适性相比于没有速度优化的策略提升了75.92%,且燃油经济性相比于两种常用的基于线性规划的策略分别提升了7.39%与10.91%。  相似文献   

3.
文章基于动态规划算法对电动节能车的速度曲线的优化问题展开了研究。在纯电动汽车的能耗优化问题中,动态规划可以用于求解最优的能耗分配方案,以达到最小化总能耗的目标,从而达到最优的一个速度曲线。基于动态规划的优化方法,根据能源动力系统效率模型提出了一种基于全局最优算法动态规划的优化速度曲线的目标优化的控制策略,并给出目标路段的最优车速,以达到一个最佳的行驶速度,可以提高电动节能车的行驶效率和节能效果,与传统的线性或非线性速度曲线设计相比,具有较好的性能和更高的实用性。文章的研究为电动节能车的设计提供了一种新的思路和方法,对于推动新能源汽车的发展和应用具有重要意义。  相似文献   

4.
插电式混合动力汽车具有节能的特点,而多动力源之间的能量管理策略对混合动力汽车能耗有很大的影响,故文章以一款在固定线路上运行的串联插电式混合动力城市客车为例,基于以往的行驶工况,根据马尔科夫理论,把需求功率随时间的变化转换为状态转移矩阵,用概率矩阵生成符合实际使用条件的随机功率序列。建立Q强化学习模块,使用得到的随机功率序列进行训练,实现城市客车能量分配的实时优化控制。仿真结果表明,文章所提出的强化学习能量管理算法相比于规则控制算法能明显的优化能耗,对比动态规划全局优化策略总能耗仅轻微增长,控制策略可实现实时应用。  相似文献   

5.
为了顺应智慧城市建设需求,缓解城市道路的拥堵,提高车辆在城市路口的通行效率,本文基于多目标粒子群算法,以车辆实时延迟时间最小、城市路口通行能力最大为优化目标,建立智慧城市路口的多目标优化模型。通过优化计算得到Pareto最优解集,以多属性决策算法得到最优配时方案,并通过更新信号灯参数,实现了信号灯的动态优化。通过SUMO交通仿真平台搭建了城市路口仿真模型,结合粒子群算法进行仿真验证。仿真结果表明,经粒子群算法优化的城市路口配时,路口的通行性能显著提升,平均通行能力提升约3.69%,平均车辆延迟时间降低约21.35%。  相似文献   

6.
为实现混合动力汽车的实时最优能量管理,提出一种基于智能网联的分层能量管理控制方法。上层控制器利用交通信号灯正时求解目标车速的范围,而采用快速模型预测控制(F-MPC)算法预测给定时间窗口内的最优目标车速序列。下层控制器根据最优目标车速序列,利用基于威兰斯线方法的等效燃油消耗最小策略(WLECMS)进行混合动力汽车能量管理。硬件在环试验结果表明,所提出的基于智能网联的上层控制器可避免混合动力汽车红灯停车,而F-MPC可实现与MPC相近的最优车速预测和燃油经济性,且每一时间步长的计算时间可缩短到MPC的7.2%;WL-ECMS可实现良好的车速跟随,百公里油耗与ECMS相当,且每一时间步长的计算时间可缩短到ECMS的1.48%。  相似文献   

7.
传统的车速引导策略考虑交通信号的信号配时(signal phases and timing,SPAT)信息和到下游交叉口的距离,来对车辆进行速度建议和引导,以提高交叉口通行效率、减少能源消耗。但由于通信设备频率的限制,实时诱导效果欠佳。随着车载设备与路侧基础设施通信技术(vehicle to infrastructure,V2I)的发展,能实时、同步地获取交通流的多维信息,研究了1种符合真实驾驶场景的实时变速引导策略。以信号相位时间和道路通行限制条件为约束,构建三阶段变速诱导模型。提出将车辆通过连续路口的车速引导问题分解为车辆通过多个相邻路口的子问题进行求解。针对任意相邻2个交叉口,求解车辆到达下游交叉口的可通行时间区域,并将到达时间区域离散化,计算车辆到达时间区域内的每1个时间节点的能耗。将连续路口车速引导问题转换为速度轨迹寻优问题进行求解,以车辆能耗为权重,采用Dijkstra算法在所有可通行速度轨迹中寻找能耗最小的速度轨迹。利用交通仿真软件SUMO搭建仿真环境,并用Python对SUMO进行二次开发,以武汉市经济开发区东风大道的3个连续路口为研究对象进行仿真验证。实验结果表明:所...  相似文献   

8.
以网联自动驾驶汽车(Connected Autonomous Vehicle,CAV)为研究对象,研究了CAV车队通过城市信号交叉口的速度轨迹优化控制策略.基于最优控制理论,采用CAV的自动驾驶模型描述车间相互作用,以所有CAV车辆在行驶过程中的总油耗为优化目标,根据信号灯的配时信息建立模型约束,通过优化CAV头车的速...  相似文献   

9.
在进行混合动力汽车能量管理时,需要根据车辆行驶的实际情况制定相对应的策略,才能提升车辆的燃油经济性。由于发动机是混合动力汽车中非常重要的部件,发动机效率高低直接影响整车油耗水平。因此,在实际工作过程中,需要加强对发动机效率及油耗的研究和分析。据此,首先从工作原理、结构类型等方面进行阐述;其次从发动机结构及优化设计的角度对发动机效率进行分析;最后从燃油经济性和排放方面进行分析。  相似文献   

10.
随着汽车的智能化与网联化,混合动力汽车的节能驾驶技术已由单纯的动力总成能量管理向涵盖车-路-云一体化的综合控制演化,基于车速规划的经济性驾驶与基于路径规划的经济性路由可显著提高汽车的节油率。介绍了现有混合动力汽车的典型节能驾驶技术,指出了节能驾驶技术的商业价值及其节油潜力;归纳总结了经济性驾驶的研究现状,引出了路径规划对于能耗的重要影响;从能耗模型构建、路径优化问题建立和求解算法三方面系统梳理了经济性路由的研究现状,指明了其研究思路;探究讨论了多车混合经济性路由问题,为物流配送车辆的经济性调度提供了优化思路;对混合动力汽车节能驾驶技术的发展趋势进行展望。  相似文献   

11.
针对城市交通流量变化产生的问题,在交叉口信号灯配时方案改进的基础上建立了动态路径诱导的双层优化模型,上层模型以行驶时间为目标函数,下层模型以总交叉口延误最小为目标函数。利用改进蚁群算法来求解优化模型,从而获得多准最优路径。以实际交叉口为例,将信号灯配时改进前、后的模型计算结果进行比较。结果表明:应用信号灯配时改进后的模型获得的路径更省时,交叉口等待通行时间更短。  相似文献   

12.
提出了一种并联式混合动力汽车(HEV)参数综合优化算法,以解决其能量管理与动力系统匹配经常各自独立进行的问题。该方法考虑电驱动系统成本,用改进型模糊能量管理策略,以能量管理策略参数、动力系统匹配参数为决策变量,以等效综合油耗、电机与电池组总成本为目标函数,在ADVISOR仿真环境下,用多目标遗传算法优化求解。结果表明:在保证整车动力性的前提下优化后,等效油耗降低23.0%,电机和电池组总成本降低41.9%;一氧化碳CO的100 km排放质量降低10.8%,碳氢化合物HC的排放降低22.2%,氮氧化物NOx的排放降低27.0%,改善了发动机效率与电机效率;验证了该方法的有效性。  相似文献   

13.
《汽车工程》2021,43(5)
为使电动汽车在行驶中达到最优能耗,以车辆行驶能耗最少为目标,提出了一种考虑交叉口信号灯和能耗的电动车最优路径规划算法。根据电动车运行时能耗和制动能量回收等因素,建立能耗模型。基于车路协同技术预先获取各路段交叉口信号灯的位置和配时信息,以此建立车辆通过信号交叉口的节能驾驶模型。基于信号灯的转换概率和电动车的能耗模型,将通过信号交叉口的交通流近似分为4个阶段:绿灯匀速通行、红灯前匀加速、红灯匀减速和红灯停车等待。结合红绿灯的转换概率和4个阶段的通行能耗,最后提出一种改进的A~*算法,来寻找可行的能耗最小的路径,并进行了算例验证。结果表明,提出的方法可找到起点到终点的能耗最优路径,节能约达13%。  相似文献   

14.
为改善插电式混合动力汽车(PHEV)的燃油经济性,提出一种基于规则的能量管理策略.结合智能网联汽车技术,利用烟花算法(F WA)结合系统约束条件,对能量管理策略参数进行优化,以求使车辆在变化的路况下能耗最低.为减轻沉重运算负荷,设计了一种事件触发机制来控制优化操作的启停.当车辆油耗超过预设上限则开始优化,一旦油耗满足预...  相似文献   

15.
基于遗传算法的混合动力汽车参数多目标优化   总被引:5,自引:1,他引:4  
针对混合动力汽车设计参数众多的状况,提出了一种对混合动力汽车传动系统参数和控制参数同时进行优化的多目标优化新方法--自适应遗传算法.在ADVISOR平台上,以一辆使用逻辑门限控制策略的并联混合动力汽车为例,分析并建立了以动力性能指标为约束的混合动力汽车参数优化的非线性规划模型,其目标函数包含最小油耗和最佳排放性能.针对遗传算法容易早熟等不足,采用带自适应交叉和变异算子的遗传算法和模拟退火技术相结合进行求解.仿真结果表明了所提出方法的有效性.  相似文献   

16.
针对装备CVT的混合动力汽车,提出了一种以混合动力系统效率最高为优化目标,以车速、加速踏板行程和电池SOC为状态变量,以电机转矩和CVT速比为控制变量的中度混合动力汽车能量优化策略。该策略综合考虑了驾驶员的实际操作和驱动需求以及各个关键部件的效率,确定了驱动工况各工作模式下的最优电机转矩和最优CVT速比,保证了混合动力系统的效率最高。采用自行搭建的前向仿真模型对所提出的能量优化策略进行了验证,结果表明:在NEDC循环工况下该车等效100km油耗比原型车降低了26.4%。  相似文献   

17.
解少博  屈鹏程  李嘉诚  王惠庆  郎昆 《汽车工程》2022,(8):1136-1143+1152
鉴于队列行驶中的网联混合动力货车(HET)的跟驰速度既涉及行车安全、能量需求与分配和电池老化速率,同时又通过车间距,影响气动阻力,以至能耗经济性,本文中提出跟驰场景下综合考虑行车安全性、能耗经济性、气动阻力和电池老化等多个目标的速度规划和能量管理协同控制策略。首先,基于空气动力学量化跟驰安全性。其次,以安全性成本、能耗成本和电池老化成本构成的等效总成本最小化为目标函数并基于模型预测控制构建实时控制策略。其中,采用长短时记忆神经网络对前车速度进行预测,并采用动态规划求解滚动时域内的优化问题。结果表明,协同控制策略能通过抑制动力电池充放电电流来降低电池老化成本,以及借助灵活调整跟驰距离来减小气动阻力并降低能耗成本。与基于人类驾驶模型的跟驰策略进行对比,结果验证了协同控制策略的可行性。  相似文献   

18.
鉴于队列行驶中的网联混合动力货车(HET)的跟驰速度既涉及行车安全、能量需求与分配和电池老化速率,同时又通过车间距,影响气动阻力,以至能耗经济性,本文中提出跟驰场景下综合考虑行车安全性、能耗经济性、气动阻力和电池老化等多个目标的速度规划和能量管理协同控制策略。首先,基于空气动力学量化跟驰安全性。其次,以安全性成本、能耗成本和电池老化成本构成的等效总成本最小化为目标函数并基于模型预测控制构建实时控制策略。其中,采用长短时记忆神经网络对前车速度进行预测,并采用动态规划求解滚动时域内的优化问题。结果表明,协同控制策略能通过抑制动力电池充放电电流来降低电池老化成本,以及借助灵活调整跟驰距离来减小气动阻力并降低能耗成本。与基于人类驾驶模型的跟驰策略进行对比,结果验证了协同控制策略的可行性。  相似文献   

19.
针对双轴并联式液压混合动力车辆(PHHV),以蓄能器荷电状态(SOC)和发动机瞬时燃油质量流量m8f为输入量,发动机需求功率比例φ为输出量,以油耗最小为目标函数设计了模型预测控制器(MPC)进行PHHV的能量管理。基于MATLAB/Simulink平台搭建了包括需求功率计算、发动机、蓄能器和泵/马达等主要部件的PHHV车辆模型并进行MPC能量管理。研究结果表明,在美国道路城市循环工况(UDDS)下,MPC管理下的PHHV能充分发挥混合动力的特点,合理调节分配发动机和液压单元的需求功率,降低行驶过程的总油耗。  相似文献   

20.
为了解决车载安全预警系统在高速公路上感知距离有限,且在曲线路段存在高事故风险和高燃油消耗的问题,在基于车联万物(V2X)技术的高速公路自动驾驶交通系统中,针对下游存在低速交通流的交通场景,提出一种高速公路网联无人驾驶车辆主动避碰运动生态速度优化模型。为了提高模型的求解效率,将原最优控制问题转化为由3个子问题构成的近似速度优化模型,并通过遗传算法求解得到最优的速度曲线,对上游车辆的运动速度进行主动控制,在保证安全和不影响交通效率的前提下,引导一系列车辆安全、平滑地跟随下游的低速交通流尾车运动,改善车辆行驶过程中的燃油经济性。为了验证所提出模型的性能,以车载安全预警系统控制策略作为对比方案,仿真结果表明:所提出的近似优化模型能够在基本保证求解精度的同时,明显改善求解效率;与车载安全预警系统控制策略相比,所提出的速度优化策略能够使车辆提前减速,避免追尾,能够在较小程度牺牲通行效率的情况下明显地平滑车辆速度曲线并节省总燃油消耗量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号