首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Three aspects of the appendicularian O. dioica's ecophysiology were measured here: 1) morphological parameters over a wide range of appendicularian sizes, including mature animals in order to document the morphological characteristics inducing reproduction; 2) clearance rate and assimilation efficiency using feeding incubations with different algal concentrations and 3) the effect of food concentration on growth, mortality and reproduction.The relationship between the body carbon weight and the clearance rate follows a power function, with an exponent of 0.91 (± 0.07). The rate of particles retention increases with the food concentration following a Michaelis–Menten relationship (half-saturation constant = 151 ± 22 µg C l− 1, maximum clearance rate = 12 ± 1 µg C µg C− 1 d− 1). The carbon assimilation efficiency decreases with the increasing food concentration. As a result, appendicularian growth which is limited in concentrations lower than 50 µg C l− 1 is saturated above 100 µg C l− 1.In immature animals the gonad represents less than 30% of the body volume whereas in mature individuals, its volume varies between 50% and 87% (mean 63%) suggesting that gonad/total volume ratio can be used as indicator of the maturation stages. The gonad weight in mature animals represents 70.3 (± 4.6)% of the total body carbon weight. Two major maturity stages can explain the changes in energy allocation: i) the somatic growth, when less energy is invested in gonad growth when compared to the rest of the body and ii) the maturation phase where most of the assimilated matter is invested in gonad maturation. This process is rapid, lasting only few hours. For this reason we measured completely mature organisms that are generally not measured during the experimental work with appendicularians. In food-limited conditions, the gonad maturation process starts with smaller individuals and ends with smaller reproductive animals having the same gonad to total volume ratio than in unlimited food conditions. The results obtained in this study were used to model the life cycle of O. dioica (see Lombard, F., Sciandra, A. and Gorsky, G., 2009-this volume. Appendicularian ecophysiology. II. Modeling nutrition, metabolism, growth and reproduction of the appendicularian Oikopleura dioica.).  相似文献   

2.
The red shrimp Aristeus antennatus is one of the target species of the bottom trawl fishery of the Balearic Islands. The objective of the present paper is to study the short spatial and temporal differences of this important economic resource between two different locations off Mallorca (Cabrera: CA; Sóller: SO), where a fleet mobility pattern has been detected, and to study the influence of environmental conditions on this species. Six simultaneous bottom-trawl and oceanographic surveys were carried out at these two locations in order to collect data from the demersal species, hydrography (temperature and salinity), trophic resources and sediment characteristics. The commercial fleet from both locations was monitored by monthly on-board sampling, log-books and daily landings obtained from sales slips. Additional data was obtained from other fishing surveys. Short spatial and temporal differences have been detected between both locations. The population at CA was more demographically homogeneous, while that at SO showed important variations, like high abundance of juveniles recruiting to fishing grounds in autumn–winter and high abundance of large females during summer. Several differences have also been found in the biology of the species between locations, such as males were more abundant in SO than in CA. Also, the reproductive period started sooner in SO than in CA, and the condition of pre-spawning females was better in SO. The percentage of total lipids in the hepatopancreas was minimal during the spawning period, showing their importance as a reserve of energy for the ovary ripening. Water masses could play an important role in these differences, the characteristics of water masses being more stable in CA than in SO. Red shrimp adult females seemed to be more correlated with the warmer and more saline Levantine Intermediate Waters, while juveniles (males and females) and adult males were more correlated with the colder Western Mediterranean Deep Waters, detected only in SO during autumn–winter. Two different hypothesis of mobility patterns for the species are discussed in relation to these observed differences.  相似文献   

3.
Particulate organic matter (POM), nutrients, chlorophyll-a (CHL) and primary production measurements were performed in the upper layer of three different regions (cyclonic, anticyclonic and frontal+peripherial) of the NE Mediterranean Sea in 1991–1994. Depth profiles of bulk POM exhibited a subsurface maximum, coinciding with the deep chlorophyll maximum (DCM) established near the base of the euphotic zone of the Rhodes cyclone and its periphery, where the nutricline was situated just below the euphotic zone for most of the year. Moreover, the POM peaks were broader and situated at shallower depths in late winter–early spring as compared to its position in the summer–autumn period. Under prolonged winter conditions, as experienced in March 1992, the characteristic POM feature disappeared in the center of the Rhodes cyclone, where the upper layer was entirely occupied by nutrient-rich Levantine deep water. Deep convective processes in the cyclonic gyre led to the formation of vertically uniform POM profiles with low concentrations of particulate organic carbon (POC) (2.1 μM), nitrogen (0.21 μM), total particulate phosphorus (PP) (0.02 μM) and chlorophyll-a (0.5 μg/L) in the euphotic zone. Though the Levantine deep waters ascended up to the surface layer with the nitrate/phosphate molar ratios (28–29) in March 1992, the N/P molar ratio of bulk POM in the upper layer was low as 10–12, indicating luxury consumption of phosphate during algal production. Depth-integrated primary production in the euphotic zone ranged from 38.5 for oligotrophic autumn to 457 mg C m−2 day−1 for moderately mesotrophic cool winter conditions.  相似文献   

4.
Dynamics of suprabenthos and zooplankton were analyzed in two areas located in the NW (off Sóller harbour) and S (off Cabrera Archipelago) of Mallorca (Balearic Islands, western Mediterranean) at depths ranging between 135–780 m. Four stations situated respectively at 150 m (shelf-slope break), and at bathyal depths of 350, 650 and 750 m were sampled at bi-monthly intervals during six cruises performed between August 2003 and June 2004. Suprabenthos showed maximum biomass in both areas from late spring to summer (April to August), while minimum biomass was found in autumn (September–November). Though variable, temporal dynamics of zooplankton showed peaks of biomass in late winter and summer (February and June), while minimals occurred in autumn (August–September) and, at bathyal depths, in April. Suprabenthos (abundance; MDS analyses) showed a sample aggregation as a function of depth (3 groups corresponding to the shelf-slope break, upper slope — over 350 m; and the middle, deeper part of the slope — over 650–750 m), without any separation of hauls by season. By contrast, zooplankton samples were separated by season and not by depth. There was evidence of three seasonal groups corresponding to summer (June 2004–August 2003), autumn–winter (September and November 2003, February 2004), and spring (April 2004), being especially well established off Sóller. In general, suprabenthos was significantly correlated with the sediment variables (e.g. total organic matter content (% OM), potential REDOX), whereas zooplankton was almost exclusively dependent on Chl a at the surface, which suggests two different food sources for suprabenthos and zooplankton. The increase of suprabenthos abundance in April–June was paralleled by a sharp increase (ca. 2.8 times) in the %OM on sediment during the same period, coupled ca. 1–2 months of delay with the peak of surface Chl a recorded in February–March (from satellite imagery data). Suprabenthos biomass was also correlated with salinity close to the bottom, suggesting a link between suprabenthos abundance and changes in the oceanographic condition of water masses close to the bottom. It is suggested that a higher suprabenthos biomass recorded off Sóller in comparison to that off Cabrera in June could, in turn, be related to a seasonal inflow of Levantine Intermediate Water (LIW) in April–June in this area at mid bathyal depths (350–650 m). This trend would be based on: 1) it was evident only at mid-slope depths between 350–750 m, coinciding with the LIW distribution, and 2) it was not recorded among zooplankton (collected throughout the water column). The possible effect of the fluctuations of suprabenthos and zooplankton on higher trophic levels has been explored studying the diet and food consumption rates of the red shrimp Aristeus antennatus, as indicator species by its dominance in bathyal communities. A. antennatus increased its food consumption from February to April–June 2004 off Sóller, which in the case of large (CL > 40 mm) specimens was found in both areas. In addition, there was a shift of diet from winter to spring–early summer. In this last period, A. antennatus preyed upon euphausiids and mesopelagic decapods and fish, while benthos (e.g. polychaetes and bivalves) decreased in the diet. This indicates an increase in the food consumption and probably in the caloric content of the diet in pre-spawning females in April–June 2004, which is synchronized with the period when gonad development begins in A. antennatus females (May–June). Anyway, macrozooplankton, and not suprabenthos, is crucial as a high energetic food source in the coupling between food intake and reproduction in the red shrimp.  相似文献   

5.
This study evaluates the reproductive potential and condition of the red shrimp (Aristeus antennatus) population inhabiting the waters around the Balearic Islands (Northwestern Mediterranean Sea), between 1991 and 2004. Red shrimp is one of the most valuable exploited demersal fishery resources in the western Mediterranean. To assess the condition of this species, we use two indices based on weight and length data, one including the gonad weight and another excluding it. Different biological parameters of the population dynamics and reproductive biology, such as sex-ratio, maturity, gonadosomatic index and presence of the spermatophore in females have also been analysed. A negative relationship was found between the gonadosomatic index and the condition of red shrimp, indicating that energy reserves are transferred from the body to the gonad during the reproductive period. The condition of adults reached minimum values during the maturation and spawning period after mating, when the gonadosomatic index, the spermatophore presence in females and the proportion of females in the population were highest. The relationship between the condition of adults during the months prior to spawning and the number of recruits in the following year was significant and positive. This relationship was stronger when only male condition was considered, suggesting that males have an important role on the reproductive potential of this species. Overall, our results suggest that condition of red shrimp, particularly males, is an important aspect for the reproductive and recruitment success of this species. The observed decreasing trend in male condition over years may raise concern on the future reproductive potential of that population.  相似文献   

6.
Processes involved in erosion, transport and deposition of cohesive materials are studied in a transect from shallow (16 m) to deep (47 m) water of the SW Baltic Sea. The wave- and current-induced energy input to the seabed in shallow water is high with strong variability and suspended matter concentrations may double within a few hours. Primary settling fluxes (from sedimentation traps) are less than 10 g m−2 day−1, whereas resuspension fluxes (evaluated from sedimentation flux gradients) are 15–20 times higher and the residence time for suspended matter in the water column is 1–2 days. Settling velocities of aggregates are on average six times higher than for individual particles resulting in an enhanced downward transport of organic matter. Wave-induced resuspension (four to six times per month) takes place with higher shear stresses on the bottom than current-induced resuspension (three to five times per month). The short residence time in the water column and the frequent resuspension events provide a fast operating benthic–pelagic coupling. Due to the high-energy input, the shallow water areas are nondepositional on time scales longer than 1–2 weeks. The sediment is sand partly covered by a thin fluff layer during low-energy periods. The presence of the fluff layer keeps the resuspension threshold very low (<0.023 N m−2) throughout the year. Evaluated from 3-D sediment transport modeling, transport from shallow to deep water is episodic. The net main directions are towards the Arkona Basin (5.5×105 t per year) and the Bornholm Basin (3.7×105 t per year). Energy input to the bottom in deep water is low and takes place much less frequently. Wave-induced resuspension occurs on average once per month. Residence time of particles (based on radioactive isotopes) in the water column is half a year and the sediment accumulation rate is 2.2 mm year−1 in the Arkona Basin.  相似文献   

7.
A nutrient–phytoplankton–zooplankton–detritus (1D-NPZD) ‘phytoplankton {Phyt} and Pseudocalanus elongatus {Zoop} dynamics in the spring bloom time in the Gda sk Gulf. The 1D-NPZD model consists of three coupled, partial second-order differential equations of the diffusion type for phytoplankton {Phyt}, zooplankton {Zoop}, nutrients {Nutr} and one ordinary first-order differential equation for benthic detritus pool {Detr}, together with initial and boundary conditions. In this model, the {Zoop} is presented by only one species of copepod (P. elongatus) and {Zoop} is composed of six cohorts of copepods with weights (Wi) and numbers (Zi); where . The calculations were made for 90 days (March, April, May) for two stations at Gda sk Gulf with a vertical space step of 0.5m and a time step of 900 s. The flow field and water temperature used as the inputs in the biological model 1D-NPZD were reproduced by the prognostic numerical simulation technique using hydrographic climatological data. The results of the numerical investigations described here were compared with the mean observed values of surface chlorophyll-a and depth integrated P. elongatus biomass for 10 years, 1980–1990. The slight differences between the calculated and mean observed values of surface chlorophyll-a and zooplankton biomass are ca. 10–60 mg C m−3 and ca. 5–23 mg C m−2, respectively, depending on the location of the hydrographic station. The 1D-NPZD model with a high-resolution zooplankton module for P. elongatus can be used to describe the temporal patterns for phytoplankton biomass and P. elongatus in the centre of the Gda sk Gulf.  相似文献   

8.
During the February 1981 cruise FIBEX MD-25 between 30–50°E and 61–64°S, hydrography showed the presence of two gyres, confirmed by the geostrophic circulation relative to 1000 m from Levitus climatology, at the borders of these gyres concentrations of highly morphologically differentiated krill were found. Gaussian component analysis of krill samples, pooled by sectors, showed three cohorts of Euphausia superba in the western sector and one in the eastern sector. Across the sampling area, Thysanoessa macrura and E. superba occurred at separate stations. Analysis of cohorts in T. macrura separated two size groups in both the western and the eastern sectors. The use of a Differentiation Index (D.I.) [Färber-Lorda, J., 1990. Somatic length relationships and ontogenetic morphometric differentiation of Euphausia superba and Thysanoessa macrura of the southwest Indian Ocean during summer (February 1981). Deep-Sea Res. 37, 1135–1143.], based on somatic lengths, allows studying certain morphological differences within the populations sampled. Morphologically different and bigger males II (D.I. from 2.8 to 3.5) were present only in the southern transect while smaller males I (D.I. from 3.5 to 5.0) were present over the entire area. Biochemical composition of both species showed significant differences among stations for protein, lipids, and carbohydrates. A significant difference in lipid content was found between males I, and males II. For T. macrura, percentage of lipid content in mature animals was much higher than that in E. superba. The D.I. size distribution showed that when populations of E. superba were highly differentiated (corresponding to mature animals) in morphology, lipid content was high, and they were located near a gyre. Differences in morphometry can influence distribution of the species, because different developing stages have different swimming capacities. It is shown that, together with hydrography and trophic conditions, lipid content and morphometry of krill populations, are different but complementary aspects that help to understand krill ecology and distribution.  相似文献   

9.
In polar regions sea ice is a site of enhanced primary production during winter and provides important habitat for small grazers, such as copepods. We sampled zooplankton from the sea ice and water column throughout 2005, near Dumont d'Urville station (Terre Adélie, Antarctica). Three species of ice-associated copepods were found: two calanoid copepods Paralabidocera antarctica and Stephos longipes and the harpacticoid copepod Drescheriella glacialis. P. antarctica was the most abundant of the three and was closely associated with the sea ice during most of the year. This species had a one year life cycle with a probable over-wintering period in the sea ice as nauplii and a short copepodite phase in spring. Reproduction and spawning occurred in early summer. A comparison with two other populations (near Syowa and Davis stations) along the east coast of Antarctica showed that there was a temporal shift in the life cycles of the three populations, which was linked to variability in sea ice conditions. D. glacialis was the second most abundant copepod and was more common during the winter than during summer, indicating its preference for the sea ice habitat. In autumn, the presence of D. glacialis in the deeper part of the water column suggested that this species colonised the sea ice from the benthos. S. longipes was found only in the water column near Dumont d'Urville and was not very abundant. In Terre Adélie particular environmental conditions, such as the absence of a permanent sea ice zone throughout the year, a longer time of open water, strong katabatic winds and the presence of polynyas, have influenced both the abundance and distribution of the three common ice-associated copepods.  相似文献   

10.
The westward evolution of an open-sea anticyclonic eddy along the western Algerian Basin is shown, for the first time, by means of 15 buoy trajectories and remote sensing observations. For 3 months, the buoy trajectories described several anticyclonic loops in periods of 4–21 days. The eddy's movement, translation, and rotation were separated with a kinematic model, resulting in a mean translation speed of 2 km/day, which fits the self-propulsion speed predicted on theoretical models for isolated eddies on a beta plane. Fluctuations in translation speed were associated with advection of the mean flow and topographic interactions. Both mechanisms changed the eddy's horizontal shape from circular to elliptical, inducing fluctuations in its swirl velocity and solid-body rotation. The initial stage of the eddy is an isolated asymmetric dipole, comprised by a small cyclone and a large anticyclone, the latter generated from a frontal instability, which under the Coriolis term acquires anticyclonic relative vorticity. During its first days of life, the anticyclonic eddy was shallow Ro=0.9 and small (diameter less than 50 km). Later on, it reached a diameter of 150 km and a vertical structure of 3 km (Ro=0.1). A retrospective analysis with infrared images shows that the eddy's generation took place at about 3–4°E. Then, the eddy completed a counterclockwise circuit never before reported in other studies and ended up at the entrance of the Algerian Basin, where the interaction with the topography and the coastal instability induced its decay. The eddy's life span was 10 months. Computations of the heating rate following clusters of buoy trajectories show fluctuations throughout the eddy's journey, induced by advection and a seasonal warming.  相似文献   

11.
Based on high resolution current and salinity measurements from the Flinten and Drogden Channels, this paper assesses the relative importance of major Baltic inflows on ‘everyday' flow conditions of highly saline water (S>17 PSU) through the Öresund for a period of 43 months. During years with no major Baltic inflows, 1994–1996, it is found that the Öresund on average supplies 1.2 Peta-grams (Pg) of salt net/year to the Baltic, while inflow above 17 PSU is in the order of 2.3 to 4.0 Pg/year. Sixty percent of this inflow is in the salinity range 17–23 PSU; the remainder has a higher salinity. It is, thus, concluded that normal and regularly occurring flow in the Öresund plays a much larger role in supplying salt to the Baltic than is usually assumed.  相似文献   

12.
The modern hydrological regime of the Dead Sea is strongly affected by anthropogenic activity. The natural fresh water budget has changed mainly due to the drastic reduction of runoff. Since 1977, the surface level of the Dead Sea has been lowered by an average rate of about 60 cm/year and for the period from 1998 to 2000, the lowering rate has reached about 100 cm/year. As a result of the runoff reduction, the upper layer salinity of the Dead Sea has increased and the gravitational stability of the water body was diminished. Eventually, during the winter of 1978–1979, the lake waters overturned, bringing to an end the long-term stable meromictic1 hydrological regime. The lake entered a new phase in which its hydrological regime switches between holomictic and meromictic regimes, depending on the size of the runoff into the lake (i.e. the amount of precipitation in the lake's watershed). The first holomictic period, 1979–1980, lasted for 2 months only. It was succeeded by a 4-year meromictic period (1980–1983). The second holomictic period lasted for 9 years (1983–1991). The rainy winter of 1991–1992 resulted in an almost 2-m sea level rise. The upper layer with a relatively low salinity was restored and a new meromictic period persisted for 4 years, until winter 1995–1996. During the last meromictic period, the hydrological regime of the Dead Sea was characterized by following long-term trends: the depth of the summer thermocline increased from 12–15 to 25–30 m; the quasi-salinity of the upper layer, initially of about 164 kg/m3, increased rapidly at a rate of about 16–18 kg/m3/year; the quasi-salinity of the deep water, initially of about 235 kg/m3, decreased slowly at a rate of about 0.08–0.10 kg/m3/year (for the sake of comparison, a quasi salinity of 235 kg/m3 is the equivalent of 280‰ “usual” salinity); and the winter minimal temperature of the upper layer, initially of about 16 °C, increased rapidly at a rate of about 2 °C/year. In November 1995, the latest meromictic period of the Dead Sea came to an end. During the present holomictic period, 1996–2000, the hydrological regime of the Dead Sea is also characterized by long-term trends: the quasi-salinity of the entire Dead Sea increased at a rate of about 0.5 kg/m3/year, with practically no decrease during the winters; the temperature of the deep water mass increased with a rate of about 0.25 °C/year; and the period of vertical convection of the entire water column, initially about 3 months, increased at a rate of about 1 week/year. Moreover, we observed that the temperature and salinity of the bottom layer in the deepest part of the Dead Sea raised by about 0.5–0.6 °C and 0.15–0.25 kg/m3 during each holomictic summer.  相似文献   

13.
Gonad morphology and maturation of the dominant Arctic copepod species Calanus glacialis and C. hyperboreus were studied using a combination of observations on whole animals (“whole-body analysis”) and histological sections to describe basic reproductive processes. The comparison with C. finmarchicus shows that the internal organisation of the gonads is the same in the Calanus species: from the dorsally laying ovary, two anterior diverticula extent into the head region and two posterior diverticula extend into the abdomen. In the diverticula, the oocytes increase in size and development stage in a dorso–ventral direction. There were no physiological differences between the oocytes in the diverticula and oviducts in any of the three species. During gonad development, the morphological modifications of the gonads mainly refer to an increase in number, developmental stage and size of the oocytes both in diverticula and oviducts. During spawning the most ventral layer of oocytes is released, and then the adjacent dorsal layer begins final maturation. Thus, the final maturation processes occur simultaneously as it is essential to produce clutches.  相似文献   

14.
The species composition, abundance, and biomass of micro- (>15 μm) and nano- (<15 μm) phytoplankton were studied along the southern Black Sea during June–July 1996 and March–April and September 1998. A total of 150 species were identified, 50% of them being dinoflagellates. The average total phytoplankton abundance changed from 77×103 cells l−1 in spring to 110×103 cells l−1 in autumn and biomass from 250 μg l−1 in summer to 1370 μg l−1 in spring. Based on the extensive sampling grid from June–July 1996, phytoplankton seemed to have a rather homogeneous biomass distribution in the southern Black Sea. In all periods, the coccolithophorid Emiliania huxleyi was the most abundant species, its contribution to the total abundance ranging from 73% in autumn to 43% in spring. However, in terms of biomass, diatoms made up the bulk of phytoplankton in spring (97%, majority being Proboscia alata) and autumn (73%, majority being Pseudosolenia calcar-avis), and dinoflagellates in summer (74%, Gymnodinium sp.). There was a remarkable similarity in the dominant species between the western and eastern regions of the southern Black Sea, indicating transport of phytoplankton within the basin.  相似文献   

15.
The optimal spectral decomposition (OSD) method is used to reconstruct seasonal variability of the Black Sea horizontally averaged chlorophyll-a concentration from data collected during the NATO SfP-971818 Black Sea Project in 1980–1995. During the reconstruction, quality control is conducted to reduce errors caused by measurement accuracy, sampling strategy, and irregular data distribution in space and time. A bi-modal structure with winter/spring (February–March) and fall (September–October) blooms is uniquely detected and accurately documented. The chlorophyll-a enriched zone rises to 15 m depth in winter and June, and deepens to 40 m in April and 35 m in August. The June rise of the chlorophyll-a enriched zone is accompanying by near-continuous reduction of upper layer maximum chlorophyll-a concentration.  相似文献   

16.
Despite its rarity, Dinophysis acuminata is in terms of economic impact, the first toxic algal species along the coasts of Western Europe. It is observed at low levels (< 20 cell l− 1) all the year round but toxic events occur mainly in late spring and summer. D. acuminata ecophysiology is largely unknown due to the inability to culture it. Therefore, standard biomass models based on inorganic nutrition are largely inadequate. Presently, any progress in describing the conditions of population growth of this species will be a step forward to prediction of harmful events at the coast. This species has been observed at increased, albeit low cell densities in retentive eddies located in pycnocline layers. A concentration build-up of one species results from the balance between growth and loss processes, one of the latter being dispersal. The scales of interest for a D. acuminata population are of the order of 10 nautical miles on the horizontal and duration of 10 days, for a reported achievable growth rate of 0.6 day− 1. A three dimensional (3D) hydrodynamical model of the Bay of Biscay has been elaborated to reproduce hydrological structures over the last decade. We attempt here to relate the existence of retentive structures revealed from simulations under realistic forcing conditions and the toxic coastal events recorded in the 10-year time series of the French plankton monitoring network database. The eddies in the coastal area appear to be directly related with the Dinophysis coastal events and they may be a potential effective tool to predict those.  相似文献   

17.
Twelve epipelagic copepod species were reviewed to compare their adaptations to the short primary production season and low temperatures which characterise the Southern Ocean. The species show a spectrum of adaptations, but three broad life cycle strategies were defined: (1) herbivorous in summer, a short reproductive period and winter diapause at depth (Calanoides acutus and possibly Ctenocalanus citer); (2) predominantly omnivorous/detritivorous diet, an extended period of feeding, growth and reproduction and less reliance on diapause at depth (Metridia gerlachei, Calanus propinquus, Calanus simillimus, Oithona similis, Microcalanus pygmaeus, and possibly Oncaea curvata and Oithona frigida); (3) overwintering and feeding within sea ice as early nauplii or copepodids (Stephos longipes and Paralabidocera antarctica). The large species Rhincalanus gigas appears to be intermediate between strategies (1) and (2). Contrasting species from groups (1) and (2), namely C. acutus and O. similis, were selected for more detailed comparison. For C. acutus, maximum (probably food saturated) feeding and egg production rates are well below equivalent values for Calanus spp. at lower latitudes. Likewise, summer growth and moulting rates are slower, and the growth season of this herbivore is only 2–4 months. Therefore, both the low summer temperatures and short primary production season seem to dictate a long (1 year) life cycle for C. acutus. A collation of data on O. similis revealed that its abundance increases about tenfold from the Antarctic shelf northwards to the Polar Frontal Zone, where abundances are similar to those in temperate and tropical shelf seas. In contrast to C. acutus, O. similis appears to remain in the epipelagic and reproduce there year-round, although the food sources which sustain this are still uncertain.  相似文献   

18.
Over the past 20 years, the Bohai Sea has been subjected to a considerable human impact through over-fishing and pollution. Together with the influence of the Yellow River cut-off, the ecosystem experienced a dramatic change. In order to integrate available information to detect any change in macrobenthic community structure and diversity over space and time, data collected during the 1980s and the 1990s from 3 regions of the Bohai Sea (Laizhou Bay, 16 stations, 37–38°N, 119–120.5°E; central Bohai Sea, 25 stations, 38–39°N, 119–121°E; eastern Bohai Bay, 12 stations, 38–39°N, 118.5–119°E) were reanalyzed in a comparative way by means of a variety of statistical techniques. A considerable change in community structure between the 1980s and the 1990s and over the geographical regions at both the species and family level were revealed. After 10 years, there was a considerable increase in abundance of small polychaetes, bivalves and crustaceans but decreased number of echinoderms. Once abundant in Laizhou Bay in the 1980s, a large echinoderm Echinocardium cordatum and a small mussel Musculista senhousia almost disappeared from the surveying area in the 1990s. Coupled with the increased abundance was the increased species richness in general whereas evenness was getting lower in central Bohai Sea and Bohai Bay but increased in Laizhou Bay. K-dominance plot showed the same trend as evenness J′. After 10 years, the macrobenthic diversity in the Bohai Sea as a whole was slightly reduced and a diversity ranking of central Bohai Sea > Laizhou Bay > eastern Bohai Bay over space was also suggested. Sediment granulometry and organic content were the two major agents behind the observed changes.  相似文献   

19.
This paper presents results obtained with MIRO&CO-3D, a biogeochemical model dedicated to the study of eutrophication and applied to the Channel and Southern Bight of the North Sea (48.5°N–52.5°N). The model results from coupling of the COHERENS-3D hydrodynamic model and the biogeochemical model MIRO, which was previously calibrated in a multi-box implementation. MIRO&CO-3D is run to simulate the annual cycle of inorganic and organic carbon and nutrients (nitrogen, phosphorus and silica), phytoplankton (diatoms, nanoflagellates and Phaeocystis), bacteria and zooplankton (microzooplankton and copepods) with realistic forcing (meteorological conditions and river loads) for the period 1991–2003. Model validation is first shown by comparing time series of model concentrations of nutrients, chlorophyll a, diatom and Phaeocystis with in situ data from station 330 (51°26.00′N, 2°48.50′E) located in the centre of the Belgian coastal zone. This comparison shows the model's ability to represent the seasonal dynamics of nutrients and phytoplankton in Belgian waters. However the model fails to simulate correctly the dissolved silica cycle, especially during the beginning of spring, due to the late onset (in the model) of the early spring diatom bloom. As a general trend the chlorophyll a spring maximum is underestimated in simulations. A comparison between the seasonal average of surface winter nutrients and spring chlorophyll a concentrations simulated with in situ data for different stations is used to assess the accuracy of the simulated spatial distribution. At a seasonal scale, the spatial distribution of surface winter nutrients is in general well reproduced by the model with nevertheless a small overestimation for a few stations close to the Rhine/Meuse mouth and a tendency to underestimation in the coastal zone from Belgium to France. PO4 was simulated best; silica was simulated with less success. Spring chlorophyll a concentration is in general underestimated by the model. The accuracy of the simulated phytoplankton spatial distribution is further evaluated by comparing simulated surface chlorophyll a with that derived from the satellite sensor MERIS for the year 2003. Reasonable agreement is found between simulated and satellite-derived regions of high chlorophyll a with nevertheless discrepancies close to the boundaries.  相似文献   

20.
Seasonal changes in the abundance and biomass of cyanobacteria (Synechococcus and Prochlorococcus) and picoeukaryotes were studied by flow cytometry in the upper layers of the central Cantabrian Sea continental shelf, from April 2002 to April 2006. The study area displayed the typical hydrographic conditions of temperate coastal zones. A marked seasonality of the relative contribution of prokaryotes and eukaryotes was found. While cyanobacteria were generally more abundant for most of the year (up to 2.4 105 cells mL− 1), picoeukaryotes dominated the community (up to 104 cells mL− 1) from February to May. The disappearance of Prochlorococcus from spring through summer is likely related to shifts in the prevailing current regime. The maximum total abundance of picophytoplankton was consistently found in late summer–early autumn. Mean photic-layer picoplanktonic chlorophyll a ranged from 0.06 to 0.53 µg L− 1 with a relatively high mean contribution to total values (33 ± 2% SE), showing maxima around autumn and minima in spring. Biomass (range 0.58–40.16 mg C m− 3) was generally dominated by picoeukaryotes (mean ± SE, 4.28 ± 0.27 mg C m− 3) with an average contribution of cyanobacteria of 30 ± 2%. Different seasonality of pigment and biomass values resulted in a clear temporal pattern of picophytoplanktonic carbon to chlorophyll a ratio, which ranged from 10 (winter) to 140 (summer). This study highlights the important contribution of picoplanktonic chlorophyll a and carbon biomass in this coastal ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号