首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Battery-only electric vehicles (BEVs) generally offer better air quality through lowered emissions, along with energy savings and security. The issue of long-duration battery charging makes charging-station placement and design key for BEV adoption rates. This work uses genetic algorithms to identify profit-maximizing station placement and design details, with applications that reflect the costs of installing, operating, and maintaining service equipment, including land acquisition. Fast electric vehicle charging stations (EVCSs) are placed across a congested city's network subject to stochastic demand for charging under a user-equilibrium traffic assignment. BEV users’ station choices consider endogenously determined travel times and on-site charging queues. The model allows for congested-travel and congested-station feedback into travelers’ route choices under elastic demand and BEV owners’ station choices, as well as charging price elasticity for BEV charging users.Boston-network results suggest that EVCSs should locate mostly along major highways, which may be a common finding for other metro settings. If 10% of current EV owners seek to charge en route, a user fee of $6 for a 30-min charging session is not enough for station profitability under a 5-year time horizon in this region. However, $10 per BEV charging delivers a 5-year profit of $0.82 million, and 11 cords across 3 stations are enough to accommodate a near-term charging demand in this Boston-area application. Shorter charging sessions, higher fees, and/or allowing for more cords per site also increase profits generally, everything else constant. Power-grid and station upgrades should keep pace with demand, to maximize profits over time, and avoid on-site congestion.  相似文献   

2.
Electric vehicles (EVs), specifically Battery EVs (BEVs), can offer significant energy and emission savings over internal combustion engine vehicles. Norway has a long history of research and government incentives for BEVs. The BEV market in Norway allows us to fully examine consumers’ BEV choices influenced by car specifications, prices and government incentives (public bus lanes access, toll waiver and charging stations). The Random-Coefficient Discrete Choice Model (referred to as the BLP model) is applied to understand the choices of heterogeneous personal consumers and business buyers. Our study is instantiated on the entire EV sales data in Norway from 2011 to 2013, as well as a set of demographics at the municipality level. The results suggest significant positive effects of BEV technology improvement, space, toll waiver and charging station density on EV demand for both personal consumers and business buyers. However, the effects on business buyers may be generally less pronounced than on personal consumers. Interestingly, bus lanes access demonstrates a negative impact for personal consumers, possibly due to consumers’ concern regarding bus lane congestion. In addition, preferences on the BEV price can vary statistically among consumers with different income levels. Compared to the BEV technology development, demographical features and municipal incentives may have generally less impacts on market shares within the BEV market.  相似文献   

3.
This paper investigates the optimal deployment of static and dynamic charging infrastructure considering the interdependency between transportation and power networks. Static infrastructure means plug-in charging stations, while the dynamic counterpart refers to electrified roads or charging lanes enabled by charging-while-driving technology. A network equilibrium model is first developed to capture the interactions among battery electric vehicles’ (BEVs) route choices, charging plans, and the prices of electricity. A mixed-integer bi-level program is then formulated to determine the deployment plan of charging infrastructure to minimize the total social cost of the coupled networks. Numerical examples are provided to demonstrate travel and charging plans of BEV drivers and the competitiveness of static and dynamic charging infrastructure. The numerical results on three networks suggest that (1) for individual BEV drivers, the choice between using charging lanes and charging stations is more sensitive to parameters including value of travel time, service fee markup, and battery size, but less sensitive to the charging rates and travel demand; (2) deploying more charging lanes is favorable for transportation networks with sparser topology while more charging stations can be more preferable for those denser networks.  相似文献   

4.
The major barriers to a more widespread introduction of battery electric vehicles (BEVs) beyond early adopters are the limited range, charging limitations, and costly batteries. An important question is therefore where these effects can be most effectively mitigated. An optimization model is developed to estimate the potential for BEVs to replace one of the conventional cars in two-car households and to viably contribute to the households’ driving demand. It uses data from 1 to 3 months of simultaneous GPS logging of the movement patterns for both cars in 64 commuting Swedish two-car households in the Gothenburg region.The results show that, for home charging only, a flexible vehicle use strategy can considerably increase BEV driving and nearly eliminate the unfulfilled driving in the household due to the range and charging limitations with a small battery. The present value of this flexibility is estimated to be on average $6000–$7000 but varies considerably between households. With possible near-future prices for BEVs based on mass production cost estimates, this flexibility makes the total cost of ownership (TCO) for a BEV advantageous in almost all the investigated households compared to a conventional vehicle or a hybrid electric vehicle. Because of the ubiquity of multi-car households in developed economies, these families could be ideal candidates for the initial efforts to enhance BEV adoptions beyond the early adopters. The results of this research can inform the design and marketing of cheaper BEVs with small but enough range and contribute to increased knowledge and awareness of the suitability of BEVs in such households.  相似文献   

5.
This research evaluated the potential for wireless dynamic charging (charging while moving) to address range and recharge issues of modern electric vehicles by considering travel to regional destinations in California. A 200-mile electric vehicle with a real range of 160 miles plus 40 miles reserve was assumed to be used by consumers in concert with static and dynamic charging as a strict substitute for gasoline vehicle travel. Different combinations of wireless charging power (20–120 kW) and vehicle range (100–300 miles) were evaluated. One of the results highlighted in the research indicated that travel between popular destinations could be accomplished with a 200-mile EV and a 40 kW dynamic wireless charging system at a cost of about $2.5 billion. System cost for a 200-mile EV could be reduced to less than $1 billion if wireless vehicle charging power levels were increased to 100 kW or greater. For vehicles consuming 138 kWh of dynamic energy per year on a 40 kW dynamic system, the capital cost of $2.5 billion plus yearly energy costs could be recouped over a 20-year period at an average cost to each vehicle owner of $512 per year at a volume of 300,000 vehicles or $168 per year at a volume of 1,000,000 vehicles. Cost comparisons of dynamic charging, increased battery capacity, and gasoline refueling were presented. Dynamic charging, coupled with strategic wayside static charging, was shown to be more cost effective to the consumer over a 10-year period than gasoline refueling at $2.50 or $4.00 per gallon. Notably, even at very low battery prices of $100 per kWh, the research showed that dynamic charging can be a more cost effective approach to extending range than increasing battery capacity.  相似文献   

6.
Recently, electric vehicles are gaining importance which helps to reduce dependency on oil, increases energy efficiency of transportation, reduces carbon emissions and noise, and avoids tail pipe emissions. Because of short daily driving distances, high mileage, and intermediate waiting time, fossil-fuelled taxi vehicles are ideal candidates for being replaced by battery electric vehicles (BEVs). Moreover, taxi BEVs would increase visibility of electric mobility and therefore encourage others to purchase an electric vehicle. Prior to replacing conventional taxis with BEVs, a suitable charging infrastructure has to be established. This infrastructure consists of a sufficiently dense network of charging stations taking into account the lower driving ranges of BEVs.In this case study we propose a decision support system for placing charging stations in order to satisfy the charging demand of electric taxi vehicles. Operational taxi data from about 800 vehicles is used to identify and estimate the charging demand for electric taxis based on frequent origins and destinations of trips. Next, a variant of the maximal covering location problem is formulated and solved to satisfy as much charging demand as possible with a limited number of charging stations. Already existing fast charging locations are considered in the optimization problem. In this work, we focus on finding regions in which charging stations should be placed rather than exact locations. The exact location within an area is identified in a post-optimization phase (e.g., by authorities), where environmental conditions are considered, e.g., the capacity of the power network, availability of space, and legal issues.Our approach is implemented in the city of Vienna, Austria, in the course of an applied research project that has been conducted in 2014. Local authorities, power network operators, representatives of taxi driver guilds as well as a radio taxi provider participated in the project and identified exact locations for charging stations based on our decision support system.  相似文献   

7.
Battery Electric vehicles (BEVs) shift pollution off the road and to potentially less damaging and more varied sources than petroleum. Depending on the source of electricity, a transition to electrified personal transportation can dramatically reduce greenhouse gas emissions and air pollutants. However current EVs tend to be more expensive and have shorter range, which can hinder public adoption. Government incentives can be used to alleviate these factors and encourage adoption. Norway has a long history incentivizing BEV adoption including measures such as exemption from roadway tolls, access to charging infrastructure, point of sale tax incentives, and usage of public bus use limited lanes. This paper analyzed the sales of electric vehicles on a regional and municipal basis in Norway and then cross analyzed these with the corresponding local demographic data and incentive measures to attempt to ascertain which factors lead to higher BEV adoption. It was concluded that access to BEV charging infrastructure, being adjacent to major cities, and regional incomes had the greatest predictive power for the growth of BEV sales. It was also concluded that short-range vehicles showed somewhat more income and unemployment sensitivity than long-range vehicles. Toll exemptions and the right to use bus designated lanes do not seem to have statistically significant predictive power for BEV sales in our linear municipal-level models, but this could be due to neighboring major cities containing those incentive features.  相似文献   

8.
This study explores how battery electric vehicle users choose where to fast-charge their vehicles from a set of charging stations, as well as the distance by which they are generally willing to detour for fast-charging. The focus is on fast-charging events during trips that include just one fast-charge between origin and destination in Kanagawa Prefecture, Japan. Mixed logit models with and without a threshold effect for detour distance are applied to panel data extracted from a two-year field trial on battery electric vehicle usage in Japan. Findings from the mixed logit model with threshold show that private users are generally willing to detour up to about 1750 m on working days and 750 m on non-working days, while the distance is 500 m for commercial users on both working and non-working days. Users in general prefer to charge at stations requiring a shorter detour and use chargers located at gas stations, and are significantly affected by the remaining charge. Commercial users prefer to charge at stations encountered earlier along their paths, while only private users traveling on working days show such preference and they turn to prefer the stations encountered later when choosing a station in peak hours. Only private users traveling on working days show a strong preference for free charging. Commercial users tend to pay for charging at a station within 500 m detour distance. The fast charging station choice behavior is heterogeneous among users. These findings provide a basis for early planning of a public fast charging infrastructure.  相似文献   

9.
Electric travelling appears to dominate the transport sector in the near future due to the needed transition from internal combustion vehicles (ICV) towards Electric Vehicles (EV) to tackle urban pollution. Given this trend, investigation of the EV drivers’ travel behaviour is of great importance to stakeholders including planners and policymakers, for example in order to locate charging stations. This research explores the Battery Electric Vehicle (BEV) drivers route choice and charging preferences through a Stated Preference (SP) survey. Collecting data from 505 EV drivers in the Netherlands, we report the results of estimating a Mixed Logit (ML) model for those choices. Respondents were requested to choose a route among six alternatives: freeways, arterial ways, and local streets with and without fast charging. Our findings suggest that the classic route attributes (travel time and travel cost), vehicle-related variables (state-of-charge at the origin and destination) and charging characteristics (availability of a slow charging point at the destination, fast charging duration, waiting time in the queue of a fast-charging station) can influence the BEV drivers route choice and charging behaviour significantly. When the state-of-charge (SOC) at the origin is high and a slow charger at the destination is available, routes without fast charging are likely to be preferred. Moreover, local streets (associated with slow speeds and less energy consumption) could be preferred if the SOC at the destination is expected to be low while arterial ways might be selected when a driver must recharge his/her car during the trip via fast charging.  相似文献   

10.
Due to the limited cruising range of battery electric vehicle (BEV), BEV drivers show obvious difference in travel behavior from gasoline vehicle (GV) drivers. To analyze BEV drivers’ charging and route choice behaviors, and extract the differences between BEV and GV drivers’ travel behavior, two multinomial logit-based and two nested logit-based models are proposed in this study based on a stated preference survey. The nested structure consists of two levels: the upper level represents the charging decision, and the lower level shows the route choices corresponding to the charging and no-charging situations respectively. The estimated results demonstrate that the nested structure is more appropriate than the multinomial structure. Meanwhile, it is observed that the initial state of charge (SOC) at origin of BEV is the most important factor that affects the decision of charging or not, and the SOC at destination becomes an important impact factor affecting BEV drivers’ route choice behavior. As for the route choice behavior when BEV has charging demand, the charging station attributes such as charging time and charging station’s location have significant influences on BEV drivers’ decision-making process. The results also show that BEV drivers incline to choose the routes with charging station having less charging time, being closer to origin and consistent with travel direction. Finally, based on the proposed models, a series of numerical analysis has been conducted to verify the effect of range anxiety on BEV charging and route choice behavior and to reveal the variation of comfortable initial SOC at origin with travel distance. Meanwhile, the effects of charging time and distance from origin to charging station also have been discussed.  相似文献   

11.
Charging infrastructure is critical to the development of electric vehicle (EV) system. While many countries have implemented great policy efforts to promote EVs, how to build charging infrastructure to maximize overall travel electrification given how people travel has not been well studied. Mismatch of demand and infrastructure can lead to under-utilized charging stations, wasting public resources. Estimating charging demand has been challenging due to lack of realistic vehicle travel data. Public charging is different from refueling from two aspects: required time and home-charging possibility. As a result, traditional approaches for refueling demand estimation (e.g. traffic flow and vehicle ownership density) do not necessarily represent public charging demand. This research uses large-scale trajectory data of 11,880 taxis in Beijing as a case study to evaluate how travel patterns mined from big-data can inform public charging infrastructure development. Although this study assumes charging stations to be dedicated to a fleet of PHEV taxis which may not fully represent the real-world situation, the methodological framework can be used to analyze private vehicle trajectory data as well to improve our understanding of charging demand for electrified private fleet. Our results show that (1) collective vehicle parking “hotspots” are good indicators for charging demand; (2) charging stations sited using travel patterns can improve electrification rate and reduce gasoline consumption; (3) with current grid mix, emissions of CO2, PM, SO2, and NOx will increase with taxi electrification; and (4) power demand for public taxi charging has peak load around noon, overlapping with Beijing’s summer peak power.  相似文献   

12.
The emergence of electric unmanned aerial vehicle (E-UAV) technologies, albeit somewhat futuristic, is anticipated to pose similar challenges to the system operation as those of electric vehicles (EVs). Notably, the charging of EVs en-route at charging stations has been recognized as a significant type of flexible load for power systems, which often imposes non-negligible impacts on the power system operator’s decisions on electricity prices. Meanwhile, the charging cost based on charging time and price is part of the trip cost for the users, which can affect the spatio-temporal assignment of E-UAV traffic to charging stations. This paper aims at investigating joint operations of coupled power and electric aviation transportation systems that are associated with en-route charging of E-UAVs in a centrally controlled and yet dynamic setting, i.e., with time-varying travel demand and power system base load. Dynamic E-UAV charging assignment is used as a tool to smooth the power system load. A joint pricing scheme is proposed and a cost minimization problem is formulated to achieve system optimality for such coupled systems. Numerical experiments are performed to test the proposed pricing scheme and demonstrate the benefits of the framework for joint operations.  相似文献   

13.
Policymakers often seek to increase the visibility of plug-in electric vehicle (PEV) chargers in public locations in effort to build familiarity and interest in PEVs. However, it is not clear if the visibility of public charging stations actually has an impact on PEV demand. The purposes of the present study are to (1) assess the current levels of visibility for public PEV charging infrastructure within Canada and (2) identify whether or not a statistically significant relationship exists between consumer awareness of public charging infrastructure and interest in purchasing a PEV. We use data collected from a sample of 1739 Canadian new-vehicle buyers in 2013. About 18% of Canadian respondents have seen at least one public charger, while the proportion is highest in British Columbia (31%). We find a significant bivariate relationship between public charger awareness and PEV interest. However, when controlling for multiple explanatory variables in regression analyses, the relationship is weak or non-existent. While perceived existence of at least one charger exhibits no significant relationship with PEV interest, perceived existence of multiple chargers can have a weak but significant relationship. Thus, public charger awareness is not a strong predictor of PEV interest; other variables are more important, such as the availability of level 1 (110/120-volt) charging at home.  相似文献   

14.
This paper studies electric vehicle charger location problems and analyzes the impact of public charging infrastructure deployment on increasing electric miles traveled, thus promoting battery electric vehicle (BEV) market penetration. An activity-based assessment method is proposed to evaluate BEV feasibility for the heterogeneous traveling population in the real world driving context. Genetic algorithm is applied to find (sub)optimal locations for siting public charging stations. A case study using the GPS-based travel survey data collected in the greater Seattle metropolitan area shows that electric miles and trips could be significantly increased by installing public chargers at popular destinations, with a reasonable infrastructure investment.  相似文献   

15.
The well-to-wheel emissions associated with plug-in electric vehicles (PEVs) depend on the source of electricity and the current non-vehicle demand on the grid, thus must be evaluated via an integrated systems approach. We present a network-based dispatch model for the California electricity grid consisting of interconnected sub-regions to evaluate the impact of growing PEV demand on the existing power grid infrastructure system and energy resources. This model, built on a linear optimization framework, simultaneously considers spatiality and temporal dynamics of energy demand and supply. It was successfully benchmarked against historical data, and used to determine the regional impacts of several PEV charging profiles on the current electricity network. Average electricity carbon intensities for PEV charging range from 244 to 391 gCO2e/kW h and marginal values range from 418 to 499 gCO2e/kW h.  相似文献   

16.
The spread of electric vehicles (EVs) and their increasing demand for electricity has placed a greater burden on electricity generation and the power grid. In particular, the problem of whether to expand the electricity power stations and distribution facilities due to the construction of EV charging stations is emerging as an immediate issue. To effectively meet the demand for additional electricity while ensuring the stability of the power grid, there is a need to accurately predict the charging demands for EVs. Therefore, this study estimates the changes in electricity charging demand based on consumer preferences for EVs, charging time of day, and types of electric vehicle supply equipment (EVSE) and elucidates the matters to be considered for constructing EV infrastructure. The results show that consumers mainly preferred charging during the evening. However, when we considered different types of EVSEs (public and private) in the analysis, people preferred to charge at public EVSEs during the day. During peak load time, people tended to prefer charging using fast public EVSEs, which shows that consumers considered the tradeoffs between the full charge time and the price for charging. Based on these findings, this study provides key political implications for policy makers to consider in taking preemptive measures to adjust the electricity supply infrastructure.  相似文献   

17.
The transportation sector is undergoing three revolutions: shared mobility, autonomous driving, and electrification. When planning the charging infrastructure for electric vehicles, it is critical to consider the potential interactions and synergies among these three emerging systems. This study proposes a framework to optimize charging infrastructure development for increasing electric vehicle (EV) adoption in systems with different levels of autonomous vehicle adoption and ride sharing participation. The proposed model also accounts for the pre-existing charging infrastructure, vehicle queuing at the charging stations, and the trade-offs between building new charging stations and expanding existing ones with more charging ports.Using New York City (NYC) taxis as a case study, we evaluated the optimum charging station configurations for three EV adoption pathways. The pathways include EV adoption in a 1) traditional fleet (non-autonomous vehicles without ride sharing), 2) future fleet (fully autonomous vehicles with ride sharing), and 3) switch-over from traditional to future fleet. Our results show that, EV adoption in a traditional fleet requires charging infrastructure with fewer stations that each has more charging ports, compared to the future fleet which benefits from having more scattered charging stations. Charging will only reduce the service level by 2% for a future fleet with 100% EV adoption. EV adoption can reduce CO2 emissions of NYC taxis by up to 861 Tones/day for the future fleet and 1100 Tones/day for the traditional fleet.  相似文献   

18.
Vehicle electrification is a promising approach towards attaining green transportation. However, the absence of charging stations limits the penetration of electric vehicles. Current approaches for optimizing the locations of charging stations suffer from challenges associated with spatial–temporal dynamic travel demands and the lengthy period required for the charging process. The present article uses the electric taxi (ET) as an example to develop a spatial–temporal demand coverage approach for optimizing the placement of ET charging stations in the space–time context. To this end, public taxi demands with spatial and temporal attributes are extracted from massive taxi GPS data. The cyclical interactions between taxi demands, ETs, and charging stations are modeled with a spatial–temporal path tool. A location model is developed to maximize the level of ET service on the road network and the level of charging service at the stations under spatial and temporal constraints such as the ET range, the charging time, and the capacity of charging stations. The reduced carbon emission generated by used ETs with located charging stations is also evaluated. An experiment conducted in Shenzhen, China demonstrates that the proposed approach not only exhibits good performance in determining ET charging station locations by considering temporal attributes, but also achieves a high quality trade-off between the levels of ET service and charging service. The proposed approach and obtained results help the decision-making of urban ET charging station siting.  相似文献   

19.
The majority of previous studies examining life cycle greenhouse gas (LCGHG) emissions of battery electric vehicles (BEVs) have focused on efficiency-oriented vehicle designs with limited battery capacities. However, two dominant trends in the US BEV market make these studies increasingly obsolete: sales show significant increases in battery capacity and attendant range and are increasingly dominated by large luxury or high-performance vehicles. In addition, an era of new use and ownership models may mean significant changes to vehicle utilization, and the carbon intensity of electricity is expected to decrease. Thus, the question is whether these trends significantly alter our expectations of future BEV LCGHG emissions.To answer this question, three archetypal vehicle designs for the year 2025 along with scenarios for increased range and different use models are simulated in an LCGHG model: an efficiency-oriented compact vehicle; a high performance luxury sedan; and a luxury sport utility vehicle. While production emissions are less than 10% of LCGHG emissions for today’s gasoline vehicles, they account for about 40% for a BEV, and as much as two-thirds of a future BEV operated on a primarily renewable grid. Larger battery systems and low utilization do not outweigh expected reductions in emissions from electricity used for vehicle charging. These trends could be exacerbated by increasing BEV market shares for larger vehicles. However, larger battery systems could reduce per-mile emissions of BEVs in high mileage applications, like on-demand ride sharing or shared vehicle fleets, meaning that trends in use patterns may countervail those in BEV design.  相似文献   

20.
Battery electric vehicles (BEVs) could reduce CO2 emissions from the transport sector but their limited electric driving range diminishes their utility to users. The effect of the limited driving range can be reduced in multi-car households where users could choose between a BEV and a conventional car for long-distance travel. However, to what extent the driving patterns of different cars in a multi-car household’s suit the characteristics of a BEV needs further analysis. In this paper we analyse the probability of daily driving above a fixed threshold for conventional cars in current Swedish and German car driving data. We find second cars in multi-car households to require less adaptation and to be better suited for BEV adoption compared to first cars in multi-car households as well as to cars in single-car households. Specifically, the share of second cars that could fulfil all their driving is 20 percentage points higher compared to first cars and cars from single-car households. This result is stable against variation of driving range and of the tolerated number of days requiring adaptation. Furthermore, the range needed to cover all driving needs for about 70% of the vehicles is only 220 km for second cars compared to 390 km for the average car. We can further confirm that second cars have higher market viability from a total cost of ownership perspective. Here, the second cars achieve a 10 percentage points higher market share compared to first cars, and to cars in single-car households for Swedish economic conditions, while for Germany the corresponding figure is 2 percentage points. Our results are important for understanding the market viability of current and near-future BEVs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号