首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transporting more than 55 million passengers per day, buses are the main transit mode in Brazil. Most of these vehicles use diesel oil and this situation causes dependence on oil, extensive greenhouse gas emissions and increasing air pollution in urban areas. In order to improve this situation the options for Brazilian cities include the use of alternative fuels and new propulsion technologies, such as hybrid vehicles. This article proposes a procedure for evaluating the performance of a recently developed Brazilian hybrid-drive technology. A simple procedure is presented to compare hybrid-drive buses with conventional diesel buses in urban operation focusing on fuel economy and the potential for reducing diesel oil consumption through the use of hybrid-drive buses. Field tests carried out by the authors indicate that fuel consumption improvement through the use of hybrid-drive buses would certainly exceed 20%, resulting in lower fuel costs and reduced carbon dioxide (CO2) emissions.  相似文献   

2.
To identify key factors of transport CO2 emissions and determine effective policies for emission reductions in fast-growing cities, this study establishes transport CO2 emission models, quantifying the influences of polycentricity and satellite cities and re-examining the effects of per capita GDP and metro service. Based on the model results, we forecast future residents’ urban transport CO2 emissions under several scenarios of different urban and transport policies and new energy technologies. We find nonlinear quadratic growth relationship between commuting CO2 emissions and per capita GDP, and the elasticities of household and individual commuting CO2 emission to per capita GDP are 1.90% and 1.45%, respectively. Developing job-housing balanced satellite cities and self-contained polycentric city can greatly decrease emissions from high emitters and can contribute to about 51–82% of the emission reductions by 2050 compared with the scenario of business as usual (BAU). Promotion of electric vehicles, electric public buses, metros, and improvement of traditional energy efficiency contributes to about 48–57% of the emission reductions by 2050 compared with the BAU. When these policies and technologies are combined, about 90% of the emissions could be reduced by 2050 compared with the BAU, and the emissions will be about 1.2–4.9 times of the present. The findings suggest that fostering polycentric urban form and job-housing balanced satellite cities is the key step for future transport CO2 emission reductions. Metro network promotion, energy efficiency improvement, and new energy type applications can also be effective in emission reductions.  相似文献   

3.
This paper shows the results of a comparative fleet test the main objective of which was to measure the influence of Low Viscosity Oils (LVO) over the fuel consumption and CO2 emissions of urban buses. To perform this test, 39 urban buses, classified into candidate and reference groups depending on the engine oil viscosity, covered a 60,000 km mileage corresponding to two rounds of standard Oil Drain Interval (ODI). In the same way, for 9 buses of the 39 buses, the effect of differential LVO over fuel consumption and their interaction with engine LVO was assessed during the second ODI.Test results confirm that the use of LVO could reduce fuel consumption, hence CO2 emissions. However, special attention should be taken prior to its implementation in a fleet, particularly if the vehicles are powered by engines with high mechanical and thermal stresses during vehicle operation because this could lead to friction loss increase, loss of the potential fuel consumption reduction of LVO and, in the worst scenario, higher rates of engine wear.  相似文献   

4.
Powertrain electrification is currently the best alternative to ensure sustainable energy efficient personal mobility, increasing the integration of intermittent Renewable Energy Sources (RES), improving air quality in urban centres, and reducing greenhouse gas emissions from the transport sector and their dependence on fossil energy sources. With the increasing number of Electric Vehicles (EVs) available from automotive manufacturers, one key question that arises is the capability of the electrical grid to feed the increasing energy demand of the EV fleet without major investments. This paper shows that a progressive penetration of EVs, even at a rapid rate, is perfectly possible for vehicles that offer autonomy, energy consumption and charging characteristics that are currently available in the market. This analysis is based on data acquired during a year, using a Plug-in Hybrid Electric Vehicle (PEV) as the only vehicle for a typical, Southern European Portuguese family. The energy consumption of a gasoline and electric vehicle is presented, as well as its impact on the household load pattern. An analysis of the impact on the grid is also presented, considering several penetration rates (100 thousand, 500 thousand and 1 million vehicles). As well as the avoided use of fossil fuel per vehicle and consequent reduction in overall emissions when compared with a conventional vehicle.  相似文献   

5.
Uptake of electric vehicles (EVs) by consumers could reduce CO2 emissions from light duty road transport, but little is known about how mass-market consumer drivers will respond to them. Self-Congruity theory proposes that products are preferred whose symbolic meanings are congruent with personal identity. Further, Construal Level theory suggests that only those who are psychologically close to a new product category through direct experience with it can make concrete construals related to their lifestyles; most drivers lack this for EVs. For instance, potential performance benefits of EVs might offset range limitations for consumers who have such direct experience. The effect of direct experience was tested in a randomised controlled trial with 393 mass-market consumer drivers. An experimental group were given direct experience of a modern battery electric vehicle (BEV), and a control group an equivalent conventional car. Despite rating the performance of the BEV more highly than that of the conventional car, willingness to consider a BEV declined after experience, particularly if the range of the BEV considered was short. The participants willing to consider a short-range BEV were those high in self-congruity, for whom the BEV could act as a strong symbol of personal identity.  相似文献   

6.
The future of US transport energy requirements and emissions is uncertain. Transport policy research has explored a number of scenarios to better understand the future characteristics of US light-duty vehicles. Deterministic scenario analysis is, however, unable to identify the impact of uncertainty on the future US vehicle fleet emissions and energy use. Variables determining the future fleet emissions and fuel use are inherently uncertain and thus the shortfall in understanding the impact of uncertainty on the future of US transport needs to be addressed. This paper uses a stochastic technology and fleet assessment model to quantify the uncertainties in US vehicle fleet emissions and fuel use for a realistic yet ambitious pathway which results in about a 50% reduction in fleet GHG emissions in 2050. The results show the probability distribution of fleet emissions, fuel use, and energy consumption over time out to 2050. The expected value for the fleet fuel consumption is about 450 and 350 billion litres of gasoline equivalent with standard deviations of 40 and 80 in 2030 and 2050, respectively. The expected value for the fleet GHG emissions is about 1360 and 850 Mt CO2 equivalent with standard deviation of 130 and 230 in 2030 and 2050 respectively. The parameters that are major contributors to variations in emissions and fuel consumption are also identified and ranked through the uncertainty analysis. It is further shown that these major contributors change over time, and include parameters such as: vehicle scrappage rate, annual growth of vehicle kilometres travelled in the near term, total vehicle sales, fuel economy of the dominant naturally-aspirated spark ignition vehicles, and percentage of gasoline displaced by cellulosic ethanol. The findings in this paper demonstrate the importance of taking uncertainties into consideration when choosing amongst alternative fuel and emissions reduction pathways, in the light of their possible consequences.  相似文献   

7.
Road transport is a major source of CO2 emissions in Ireland and accounts for almost 96% of the total CO2 emissions from the transport sector. Following the recent adopted UNFCCC reporting guidelines on annual inventories [24/CP.19], this study applied the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (2006 IPCC GLs) tier 3 approach to estimate CO2 emissions from road transport at the vehicle category level, for the first time in Ireland. For this, disaggregated datasets were prepared based on year of vehicle registration and mileage since registration of the vehicle. Such an approach provided a more realistic national scenario in comparison to the use of average mileage degradation in emission calculations. This investigation comprised a recalculation of previous emissions estimates (1990–2012) and an estimation of CO2 emissions in 2013 using a previously unavailable level of data disaggregation for vehicle mileage as well as using vehicle class specific data and an improved bottom-up estimation methodology in COPERT. Historic vehicle fleet data were restructured, annual mileage data were estimated in relation to the fleet data and back extrapolated using a regression approach.The results showed that the mileage degradation was not only subject to fuel technology, engine size, and age but also the emissions class and vehicle category. It was also observed that the disaggregated level of data provided a different CO2 emissions split among the vehicle categories than that of previous estimations which were based on an aggregated level of data. Previous emissions inventories (1990–2012) were shown to have underestimated the share from diesel fuelled passenger cars by more than 56% in 2012. Diesel fuelled passenger cars were also found to account for the majority of CO2 emissions from road transport activities in Ireland in 2013. The level and trend assessment showed that emissions from Euro-II and Euro-III classed vehicles especially for passenger cars, which have a significant contribution to the total emission in 2013 have caused an increase in fleet level emissions in Ireland. In addition, the results also showed that the emissions share from Light Duty Vehicles and Heavy Duty Vehicles were overestimated by previous investigations. This paper highlights the importance of the resolution of data used in emissions inventory preparation which may impact upon future projections and policy formulation. The findings of this investigation are also discussed in relation their implications for road transport policy, including carbon taxation and future policy options aimed at achieving EU emissions target in 2020.  相似文献   

8.
This paper investigates how California may reduce transportation greenhouse gas emissions 80% below 1990 levels by 2050 (i.e., 80in50). A Kaya framework that decomposes greenhouse gas emissions into the product of population, transport intensity, energy intensity, and carbon intensity is used to analyze emissions and mitigation options. Each transportation subsector, including light-duty, heavy-duty, aviation, rail, marine, agriculture, and off-road vehicles, is analyzed to identify specific mitigation options and understand its potential for reducing greenhouse gas emissions. Scenario analysis shows that, while California’s 2050 target is ambitious, it can be achieved in transport if a concerted effort is made to change travel behavior and the vehicles and fuels that provide mobility. While no individual ‘‘Silver Bullet” strategy exists that can achieve the goals, a portfolio approach that combines strategies could yield success. The 80in50 scenarios show the impacts of advanced vehicle and fuels technologies as well as the role of travel demand reduction, which can significantly reduce energy and resource requirements and the level of technology development needed to meet the target.  相似文献   

9.
The vehicle fleet in the Ceará state has grown 180% over the last ten years. The growth of the resulting emissions is unknown in view of the expansion of this fleet in the greater Fortaleza Metropolitan Area (FMA). The largest fleet in the FMA is in the Fortaleza city itself, where flex fuel vehicles predominate (∼30%). Flex fuel motorcycles increased significantly (greater than 800%) between 2010 and 2015. This paper aims to estimate the road vehicle emissions of carbon monoxide (CO), non-methane hydrocarbons (NMHC), aldehydes (RCHO), nitrogen oxides (NOx), and particulate matter (PM) from the main road vehicle fleets of Fortaleza and its metropolitan area using a macrosimulation, bottom-up method, between 2010 and 2015. The results showed that road vehicle emissions of CO, NMHC and RCHO increased mainly by Otto cycle vehicles increase due to the introduction of flex fuel vehicles; however, the NOx and PM emissions noticeable reduction is also a result of emission policies that seed the introduction of new technologies. In 2015, more than 70,000 tons of CO (21.2 ton/1000person), 8000 tons of NMHC (2.5 ton/1000person), 290 tons of RCHO (0.09 ton/1000person), 15,000 tons of NOx (4.4 ton/1000person) and 600 tons of PM (0.2 ton/1000person) were emitted in the region under study. Comparing with other Brazilian regions, FMA emit higher levels of pollutants per inhabitant than the state of São Paulo and the state of Rio de Janeiro but lower levels than Porto Alegre city.  相似文献   

10.
This paper examines the factors and incentives that are most likely to influence households’ choice for cleaner vehicles in the metropolitan area of Hamilton, Canada. Data collection is based on experimental design and stated choice methods through an Internet survey. Choice alternatives included a conventional gasoline, a hybrid and an alternative fuelled vehicle. Each option is described by a varying set of vehicle attributes and economic incentives, customized per respondent. Controlling for individual, household and dwelling-location characteristics, parameters of a nested logit model indicates that reduced monetary costs, purchase tax relieves and low emissions rates would encourage households to adopt a cleaner vehicle. On the other hand, incentives such as free parking and permission to drive on high occupancy vehicle lanes with one person in the car were not significant. Furthermore, limited fuel availability is a concern when households considered the adoption of an alternative fuelled vehicle. Finally, willingness-to-pay extra for a cleaner vehicle is computed based on the estimated parameters.  相似文献   

11.
The European Union (EU) recently adopted CO2 emissions mandates for new passenger cars, requiring steady reductions to 95 gCO2/km in 2021. We use a multi-sector computable general equilibrium (CGE) model, which includes a private transportation sector with an empirically-based parameterization of the relationship between income growth and demand for vehicle miles traveled. The model also includes representation of fleet turnover, and opportunities for fuel use and emissions abatement, including representation of electric vehicles. We analyze the impact of the mandates on oil demand, CO2 emissions, and economic welfare, and compare the results to an emission trading scenario that achieves identical emissions reductions. We find that vehicle emission standards reduce CO2 emissions from transportation by about 50 MtCO2 and lower the oil expenditures by about €6 billion, but at a net added cost of €12 billion in 2020. Tightening CO2 standards further after 2021 would cost the EU economy an additional €24–63 billion in 2025, compared with an emission trading system that achieves the same economy-wide CO2 reduction. We offer a discussion of the design features for incorporating transport into the emission trading system.  相似文献   

12.
In many cities, diesel buses are being replaced by electric buses with the aim of reducing local emissions and thus improving air quality. The protection of the environment and the health of the population is the highest priority of our society. For the transport companies that operate these buses, not only ecological issues but also economic issues are of great importance. Due to the high purchase costs of electric buses compared to conventional buses, operators are forced to use electric vehicles in a targeted manner in order to ensure amortization over the service life of the vehicles. A compromise between ecology and economy must be found in order to both protect the environment and ensure economical operation of the buses.In this study, we present a new methodology for optimizing the vehicles’ charging time as a function of the parameters CO2eq emissions and electricity costs. Based on recorded driving profiles in daily bus operation, the energy demands of conventional and electric buses are calculated for the passenger transportation in the city of Aachen in 2017. Different charging scenarios are defined to analyze the influence of the temporal variability of CO2eq intensity and electricity price on the environmental impact and economy of the bus. For every individual day of a year, charging periods with the lowest and highest costs and emissions are identified and recommendations for daily bus operation are made. To enable both the ecological and economical operation of the bus, the parameters of electricity price and CO2 are weighted differently, and several charging periods are proposed, taking into account the priorities previously set. A sensitivity analysis is carried out to evaluate the influence of selected parameters and to derive recommendations for improving the ecological and economic balance of the battery-powered electric vehicle.In all scenarios, the optimization of the charging period results in energy cost savings of a maximum of 13.6% compared to charging at a fixed electricity price. The savings potential of CO2eq emissions is similar, at 14.9%. From an economic point of view, charging between 2 a.m. and 4 a.m. results in the lowest energy costs on average. The CO2eq intensity is also low in this period, but midday charging leads to the largest savings in CO2eq emissions. From a life cycle perspective, the electric bus is not economically competitive with the conventional bus. However, from an ecological point of view, the electric bus saves on average 37.5% CO2eq emissions over its service life compared to the diesel bus. The reduction potential is maximized if the electric vehicle exclusively consumes electricity from solar and wind power.  相似文献   

13.
ABSTRACT

This paper investigates strategies that could achieve an 80% reduction in transportation emissions from current levels by 2050 in the City of Philadelphia. The baseline daily lifecycle emissions generated by road transportation in the Greater Philadelphia Region in 2012 were quantified using trip information from the 2012 Household Travel Survey (HTS). Emissions were projected to the year 2050 accounting for population growth and trends in vehicle technology for both the Greater Philadelphia Region and the City of Philadelphia. The impacts of vehicle technology and shifts in travel modes on greenhouse gas (GHG) emissions in 2050 were quantified using a scenario approach. The analysis of 12 different scenarios suggests that 80% reduction in emissions is technically feasible through a combination of active transportation, cleaner fuels for public transit vehicles, and a significant market penetration of battery-electric vehicles. The additional electricity demand associated with greater use of electric vehicles could amount to 10.8 TWh/year. The use of plug-in hybrid electric vehicles (PHEV) shows promising results due to high reductions in GHG emissions at a potentially manageable cost.  相似文献   

14.
Car ownership in China is expected to grow dramatically in the coming decades. If growing personal vehicle demand is met with conventional cars, the increase in greenhouse gas emissions will be substantial. One way to mitigate carbon dioxide (CO2) emissions from passenger travel is to meet growing demand for cars with alternative vehicles such as hybrid- and battery-electric vehicles (HEVs and BEVs). Our study examines the cost-effectiveness of transitioning from conventional cars to HEVs and BEVs, by calculating their marginal abatement cost (MAC) of carbon in the long-run. We find that transitioning from conventional to hybrid and battery electric light-duty, four-wheel vehicles can achieve carbon emissions reductions at a negative cost (i.e. at a net benefit) in China. In 2030, the average MAC is estimated to be about −$140/ton CO2 for HEVs and −$515/ton CO2-saved for BEVs, varying by key parameters. The total mitigation potential of each vehicle technology is estimated to be 1.38 million tons for HEVs and 0.75 million tons for BEVs.  相似文献   

15.
Buses are the main transit mode in Brazil, transporting more than 55 million passengers per day. Most of these vehicles run on diesel oil causing a dependence on oil, extensive greenhouse gas emissions and increasing air pollution in urban areas. In order to improve this situation, options for Brazilian cities include the use of alternative fuels and new propulsion technologies, such as hybrid vehicles. This paper proposes a procedure for evaluating the performance of a recently developed hybrid‐drive technology. A simple procedure is presented to compare hybrid‐drive buses with conventional diesel buses in urban operations, particularly with respect to fuel economy. Next the potential for reducing diesel oil consumption through the use of hybrid‐drive buses is assessed. Field tests carried out by the authors indicate that fuel consumption improvement through the use of hybrid‐drive buses would certainly exceed 20%, resulting in lower fuel costs and carbon dioxide (CO2) emissions.  相似文献   

16.
Electric vehicles (EVs) have noteworthy potential to reduce global and local emissions and are expected to become a relevant future market for vehicle sales. Both policy makers and car manufacturers have an interest to understand the first large EV user group, frequently referred to as ‘early adopters’. However, there are only a few empirical results available for this important group. In this paper, we analyse and discuss several empirical data sets from Germany, characterising this user group from both a user and a product perspective, i.e. who is willing to buy an EV and who should buy one. Our results show that the most likely group of private EV buyers in Germany are middle-aged men with technical professions living in rural or suburban multi-person households. They own a large share of vehicles in general, are more likely to profit from the economical benefits of these vehicles due to their annual vehicle kilometres travelled and the share of inner-city driving. They state a higher willingness to buy electric vehicles than other potential adopter groups and their higher socio-economic status allows them to purchase EVs. In contrast to this, inhabitants of major cities are less likely to buy EVs since they form a small group of car owners in general, their mileage is too low for EVs to pay off economically and they state lower interest and lower willingness to pay for EVs than other groups. Our results indicate that transport policy promoting EVs should focus on middle-aged men with families from rural and sub-urban cities as first private EV buyers.  相似文献   

17.
Plug-in electric vehicles can potentially emit substantially lower CO2 emissions than internal combustion engine vehicles, and so have the potential to reduce transport emissions without curtailing personal car use. Assessing the potential uptake of these new categories of vehicles requires an understanding of likely consumer responses. Previous in-depth explorations of appraisals and evaluations of electric vehicles have tended to focus on ‘early adopters’, who may not represent mainstream consumers. This paper reports a qualitative analysis of responses to electric cars, based on semi-structured interviews conducted with 40 UK non-commercial drivers (20 males, 20 females; age 24-70 years) at the end of a seven-day period of using a battery electric car (20 participants) or a plug-in hybrid car (20 participants). Six core categories of response were identified: (1) cost minimisation; (2) vehicle confidence; (3) vehicle adaptation demands; (4) environmental beliefs; (5) impression management; and, underpinning all other categories, (6) the perception of electric cars generally as ‘work in progress’ products. Results highlight potential barriers to the uptake of current-generation (2010) plug-in electric cars by mainstream consumers. These include the prioritization of personal mobility needs over environmental benefits, concerns over the social desirability of electric vehicle use, and the expectation that rapid technological and infrastructural developments will make current models obsolete. Implications for the potential uptake of future electric vehicles are discussed.  相似文献   

18.
Increasing CO2 emissions from the transport sector have raised substantial concerns among researchers and policy makers. This research examines the impact of the built environment on individual transport emissions through two mediate variables, vehicle usage and vehicle type choice, within a structural equation modelling (SEM) framework. We find that new-urbanism-type built environment characteristics, including high density, mixed land use, good connectivity, and easy access to public transport systems help reduce transport CO2 emissions. Such mitigating effect is achieved largely through the reduced vehicle miles travelled (VMT) and is enhanced slightly by the more efficient vehicles owned by individuals living in denser and more diverse neighborhoods, all else being equal. Our research findings provide some new evidence that supports land use policies as an effective strategy to reduce transport CO2 emissions.  相似文献   

19.
The number of conventionally fuelled motor vehicles in use is increasing worldwide despite warnings about finite fossil fuel and the detrimental impacts of burning such fuels. While electric vehicles, the subject of much research, generate far less emissions and offer the potential for power from renewable sources, they are yet to significantly penetrate the market. Tangible barriers such as price and vehicle range still exist, but consumer attitudes also drive behaviour. This paper examines attributes in a framework relatively new to transportation and energy policy; best–worst scaling. This method is widely considered an improvement over traditional methods of eliciting attitudes and beliefs, where respondents select attitudes they find best or worst from a set of attitudinal statements. To avoid potential endogeneity bias, we jointly model attitudes and choice for the first time with best–worst data. It is found that energy crisis, air quality and climate change concerns influence behaviour with respect to vehicle range and that travel behaviour change and forms of government incentives are needed influences on behaviour with respect to vehicle emissions. It is argued that correctly modelling attitudes reduces the error term of the vehicle choice model and provides policy makers with an improved lens for assessing behaviour. Additionally, the methods described within can easily be adapted to other policy scenarios.  相似文献   

20.
On-board real-time emission experiments were conducted on 78 light-duty vehicles in Bogota. Direct emissions of carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and hydrocarbons (HC) were measured. The relationship between such emissions and vehicle specific power (VSP) was established. The experimental matrix included both gasoline-powered and retrofit dual fuel (gasoline–natural gas) vehicles. The results confirm that VSP is an appropriate metric to obtain correlations between driving patterns and air pollutant emissions. Ninety-five percent of the time vehicles in Bogota operate in a VSP between −15.2 and 17.7 kW ton−1, and 50% of the time they operate between −2.9 and 1.2 kW ton−1, representing low engine-load and near-idling conditions, respectively. When engines are subjected to higher loads, pollutant emissions increase significantly. This demonstrates the relevance of reviewing smog check programs and command-and-control measures in Latin America, which are widely based on static (i.e., idling) emissions testing. The effect of different driving patterns on the city’s emissions inventory was determined using VSP and numerical simulations. For example, improving vehicle flow and reducing sudden and frequent accelerations could curb annual emissions in Bogota by up to 12% for CO2, 13% for CO and HC, and 24% for NOx. This also represents possible fuel consumption savings of between 35 and 85 million gallons per year and total potential economic benefits of up to 1400 million dollars per year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号