首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This research evaluated the potential for wireless dynamic charging (charging while moving) to address range and recharge issues of modern electric vehicles by considering travel to regional destinations in California. A 200-mile electric vehicle with a real range of 160 miles plus 40 miles reserve was assumed to be used by consumers in concert with static and dynamic charging as a strict substitute for gasoline vehicle travel. Different combinations of wireless charging power (20–120 kW) and vehicle range (100–300 miles) were evaluated. One of the results highlighted in the research indicated that travel between popular destinations could be accomplished with a 200-mile EV and a 40 kW dynamic wireless charging system at a cost of about $2.5 billion. System cost for a 200-mile EV could be reduced to less than $1 billion if wireless vehicle charging power levels were increased to 100 kW or greater. For vehicles consuming 138 kWh of dynamic energy per year on a 40 kW dynamic system, the capital cost of $2.5 billion plus yearly energy costs could be recouped over a 20-year period at an average cost to each vehicle owner of $512 per year at a volume of 300,000 vehicles or $168 per year at a volume of 1,000,000 vehicles. Cost comparisons of dynamic charging, increased battery capacity, and gasoline refueling were presented. Dynamic charging, coupled with strategic wayside static charging, was shown to be more cost effective to the consumer over a 10-year period than gasoline refueling at $2.50 or $4.00 per gallon. Notably, even at very low battery prices of $100 per kWh, the research showed that dynamic charging can be a more cost effective approach to extending range than increasing battery capacity.  相似文献   

3.
Field-relevant reference driving cycles, equivalent to real-life operation, are a prerequisite for the consistent development and testing of vehicles, their components, and control algorithms. Furthermore they are the basis for certification and type testing. However, a static cycle can easily be detected during vehicle testing, so that optimized control parameters could be used to obtain improved emission results under test conditions. In this paper, a novel method is described and applied to generate a dynamic driving cycle that statistically matches the real-life operation of a vehicle. The analysis is performed based on an extensive field data set obtained during an automated measurement campaign of public busses for more than a full year with 27,365 h of operation and 315,583 km driven in the city of Hamburg (Germany). The data collected is statistically compared to the static reference cycles New European Driving Cycle (NEDC) and Worldwide harmonized Light Vehicles Test Procedure (WLTP). Two micro trip models with increasing complexity are described and fit to the data set. All models are quantitatively compared to the measured data set applying a Quality of Fit (QoF) indicator. Based on the highest consistency to field data, a non-deterministic driving cycle generator is developed and its output is statistically compared to the original measurement. In contrast to the existing reference cycles, the dynamic output of the non-deterministic driving cycle generator presented in this paper is statistically proven to be consistent with real-life operation of public busses in the urban environment of Hamburg.  相似文献   

4.
The market share of Electric Vehicles (EVs), an attractive alternative to conventional vehicles, is expected to exceed 30% of all vehicles by 2033 in Australia. Although the expected EV uptake may place greater burdens on electricity networks, the potential impacts contributed by different EV user categories and vehicle models to peak loads at different times during the day are not well understood. This paper addresses the issue through statistical analysis of the charge events in the Victorian EV Trial in Australia as well as modeling the charging behaviors according to participant categories and vehicle models. The analysis was performed on 4933 charge events that were recorded by both private and public Electric Vehicle Supply Equipment. In total, these events consumed over 33 MW h of energy over 12,170 h by the 178 trial participants, out of which about 70% were household participants while the others were fleet participants. Based on a range of EV uptake scenarios and modeled charging behaviors from the trial, the power demand in the summer of 2032/33 was estimated for all of Victoria. The results of the simulations show that the broad scale uptake of EVs produces a relatively small increase in overall power demand (estimated to be between 5.72% and 9.79% in 2032/33).  相似文献   

5.
Motor vehicle emission rate models for predicting oxides of nitrogen (NOx) emissions are insensitive to vehicle modes of operation such as cruise, acceleration, deceleration, and idle, because they are based on average trip speed. Research has shown that NOx emissions are sensitive to engine load; hence, load-based variables need to be included in emissions models. Ongoing studies attempting to incorporate these `modal' variables have experienced difficulties with: (1) incomplete and/or non-representative data sets of emissions test data vis-a-vis the modal operating profiles of the tested vehicles; (2) lack of information for predicting on-road operating parameters of vehicles; and (3) non-representative vehicles recruited for emissions tests.The objective of this research was to develop a statistical model for predicting NOx emissions from light-duty gasoline motor vehicles. The primary end use of this model is forecasting, rather than explanation of the factors that affect NOx emissions, which brings to bear different requirements from the statistical model. The three challenges noted above are addressed by: (1) analyzing a data set of more than 13 000 hot-stabilized laboratory treadmill tests on 19 driving cycles (specific speed versus time testing conditions), and 114 variables describing vehicle, engine and test cycle characteristics; (2) making the models compatible with empirical data on how vehicles are being operated in-use; and (3) developing statistical weights to account for the differences in model year distributions between the emissions testing database and the current national on-road fleets.The NOx emissions model is estimated using ordinary least-squares regression techniques, with transformed response variable and regression weights. Tree regression is employed as a tool for mining relationships among variables in the data, with particular focus on identifying useful interactions among discrete variables. Details of the model development process are presented, as well as results for the final model showing the predicted emissions algorithm for the current motor vehicle fleet in Atlanta, GA metropolitan region.  相似文献   

6.
This paper relies on vehicle trajectory collection on a corridor, to compare different traffic representations used for the estimation of the sound power of light vehicles and the resulting sound pressure levels. Four noise emission models are tested. The error introduced when the emissions are calculated based on speeds measured at regular intervals along the road network are quantified and explained. The current noise emission models might in particular misestimate noise levels under congestion. This bias can be reduced by introducing additional traffic variables in the modeling. In addition, significant differences within the models are highlighted, especially concerning their accounting of vehicle accelerations. Models that rely on a binary representation of acceleration regimes (a vehicle or a road segment is accelerating or not) can lead to errors in practice. Models under use in Europe have a very low sensitivity to acceleration values. These results help underlying the further required improvements of dynamic road traffic noise models.  相似文献   

7.
A model of highway traffic noise is formulated based on vehicle types. The data were collected from local highways in Thailand with free-flow traffic conditions. First, data on vehicle noise was collected from individual vehicles using sound level meters placed at a reference distance. Simultaneously, measurements were made of vehicles’ spot speeds. Secondly, are data for building the highway traffic noise model. This consists of traffic noise levels, traffic volumes by vehicle classification, average spot speeds by vehicle type, and the geometric dimension of highway sections. The free-flow traffic noise model is generated from this database. A reference energy mean emission level (the basic noise) level for each type of vehicles is developed based on direct measurement of Leq (10 s) from the real running condition of each type of vehicles. Modification of terms and parameters are used to make the model fit highway traffic characteristics and different types of vehicle.  相似文献   

8.
When operated at low speeds, electric and hybrid vehicles have created pedestrian safety concerns in congested areas of various city centers, because these vehicles have relatively silent engines compared to those of internal combustion engine vehicles, resulting in safety issues for pedestrians and cyclists due to the lack of engine noise to warn them of an oncoming electric or hybrid vehicle. However, the driver behavior characteristics have also been considered in many studies, and the high end-prices of electric vehicles indicate that electric vehicle drivers tend to have a higher prosperity index and are more likely to receive a better education, making them more alert while driving and more likely to obey traffic rules. In this paper, the positive and negative factors associated with electric vehicle adoption and the subsequent effects on pedestrian traffic safety are investigated using an agent-based modeling approach, in which a traffic micro-simulation of a real intersection is simulated in 3D using AnyLogic software. First, the interacting agents and dynamic parameters are defined in the agent-based model. Next, a 3D intersection environment is created to integrate the agent-based model into a visual simulation, where the simulation records the number of near-crashes occurring in certain pedestrian crossings throughout the virtual time duration of a year. A sensitivity analysis is also carried out with 9000 subsequent simulations performed in a supercomputer to account for the variation in dynamic parameters (ambient sound level, vehicle sound level, and ambient illumination). According to the analysis, electric vehicles have a 30% higher pedestrian traffic safety risk than internal combustion engine vehicles under high ambient sound levels. At low ambient sound levels, however, electric vehicles have only a 10% higher safety risk for pedestrians. Low levels of ambient illumination also increase the number of pedestrians involved in near-crashes for both electric vehicles and combustion engine vehicles.  相似文献   

9.
A practical system is described for the real-time estimation of travel time across an arterial segment with multiple intersections. The system relies on matching vehicle signatures from wireless sensors. The sensors provide a noisy magnetic signature of a vehicle and the precise time when it crosses the sensors. A match (re-identification) of signatures at two locations gives the corresponding travel time of the vehicle. The travel times for all matched vehicles yield the travel time distribution. Matching results can be processed to provide other important arterial performance measures including capacity, volume/capacity ratio, queue lengths, and number of vehicles in the link. The matching algorithm is based on a statistical model of the signatures. The statistical model itself is estimated from the data, and does not require measurement of ‘ground truth’. The procedure does not require measurements of signal settings; in fact, signal settings can be inferred from the matched vehicle results. The procedure is tested on a 1.5 km (0.9 mile)-long segment of San Pablo Avenue in Albany, CA, under different traffic conditions. The segment is divided into three links: one link spans four intersections, and two links each span one intersection.  相似文献   

10.
Statistical spatial repeatability (SSR) is an extension to the well known concept of spatial repeatability. SSR states that the mean of many patterns of dynamic tyre force applied to a pavement surface is similar for a fleet of trucks of a given type. A model which can accurately predict patterns of SSR could subsequently be used in whole-life pavement deterioration models as a means of describing pavement loading due to a fleet of vehicles. This paper presents a method for predicting patterns of SSR, through the use of a truck fleet model inferred from measurements of dynamic tyre forces. A Bayesian statistical inference algorithm is used to determine the distributions of multiple parameters of a fleet of quarter-car heavy vehicle ride models, based on prior assumed distributions and the set of observed dynamic tyre force from a ‘true’ fleet of one hundred simulated models. Simulated forces are noted at 16 equidistant pavement locations, similar to data from a multiple sensor weigh-in-motion site. It is shown that the fitted model provides excellent agreement in the mean pattern of dynamic force with the originally generated truck fleet. It is shown that good predictions are possible for patterns of SSR on a given section of road for a fleet of similar vehicles. The sensitivity of the model to errors in parameter estimation is discussed, as is the potential for implementation of the method.  相似文献   

11.
This paper considers the impact on local residents of audible pedestrian signals (APS) that provide cues to the visually handicapped pedestrians on the onset of the various signal phases at a signalized crosswalk. We investigate the extent of the noise intrusion problem of APS through understanding the acceptability by the general public. From the perception surveys conducted, vehicle engine/braking sound, neighbor talking/playing and vehicle alarm are the top three irritating noises experienced while sleeping whereas audible signals is ranked at 21st position. The maximum sound level of the signals found to be acceptable indoors is close to 60 dBA.  相似文献   

12.
The current research direction in transportation-related air-quality modeling is towards development and implementation of modal emissions models that correlate emission rates to specific ranges of activity. This paper describes a methodology to identify roadway characteristics at signalized intersections which affect the fraction of vehicle activity spend in specific operating modes where modal emission rate models indicate elevated emissions occur to improve vehicle activity inputs to modal emissions models. Field studies using laser guns were conducted on-road collecting second-by-second activity for individual vehicles at signal-controlled intersections and roadway segments. Hierarchical tree-based regression analysis was used to identify on-road geometric and operational characteristics that influenced the fractions of vehicle activity spent in specific modes. Results indicated that queue position, grade, downstream and upstream per-lane hourly volume, distance to the nearest downstream signalized intersection, percent heavy vehicles, and posted link speed limit were the most statistically significant variables.  相似文献   

13.
This paper analyses the results of the Royal Automobile Clubhallo’s 2011 RAC Future Car Challenge, an annual motoring challenge in which participants seek to consume the least energy possible while driving a 92 km route from Brighton to London in the UK. The results reveal that the vehicle’s power train type has the largest impact on energy consumption and emissions. The traction ratio, defined as the fraction of time spent on the accelerator in relation to the driving time, and the amount of regenerative braking have a significant effect on the individual energy consumption of vehicles. In contrast, the average speed does not have a great effect on a vehicles’ energy consumption in the range 25–70 km/h.  相似文献   

14.
This paper investigates the costs of controlling some of the environmental impacts of motor vehicle transportation on groundwater and on surface waters. We estimate that annualized costs of cleaning-up leaking underground storage tanks range from $0.8 billion to $2.1 billion per year over 10 years. Annualized costs of controlling highway runoff from principal arterials in the US are much larger: they range from $2.9 billion to $15.6 billion per year over 20 years (1.6–8.3% of annualized highway transportation expenditures). Some causes of non-point source pollution were unintentionally created by regulations or could be addressed by simple design changes of motor vehicles. A review of applicable measures suggests that effective policies should combine economic incentives, information campaigns, and enforcement, coupled with preventive environmental measures. In general, preventing water pollution from motor vehicles would be much cheaper than cleaning it up.  相似文献   

15.
Real-world vehicle operating mode data (2.5 million 1 Hz records), collected by instrumenting the vehicles of 82 volunteer drivers with OBD datalogger and GPS while they drove their routine travel routes, were analyzed to quantify vehicle emissions estimate errors due to road grade and driving style in rural, hilly Vermont. Data were collected in winter and summer for MY 1996 and newer passenger cars and trucks only. EPA MOVES2010b was used to estimate running exhaust emissions associated with measured vehicle activity. Changes in vehicle specific power (VSP) and MOVES operating mode (OpMode) due to proper accounting for real-world road grade indicated emission rate errors between 10% and 48%, depending on pollutant, chiefly because grade-related changes in VSP could shift activity by as many as six OpModes, depending on road type. The correct MOVES OpMode assignment was made only 33–55% of the time when road grade was not included in the VSP calculation. Driving style of individual drivers was difficult to assess due to unknown traffic operations data, but the largest differences between individual drivers were observed on rural restricted roads, where traffic conditions and control have minimal impact. The results suggest the importance of (1) measuring and incorporating real-world road grade in order to correctly assign MOVES emission rates; and (2) developing a driving style typology to account for differences in the MOVES emissions estimates due to driver variability.  相似文献   

16.
Discrepancies between real-world use of vehicles and certification cycles are a known issue. This paper presents an analysis of vehicle fuel consumption and pollutant emissions of the European certification cycle (NEDC) and the proposed worldwide harmonized light vehicles test procedure (WLTP) Class 3 cycle using data collected on-road. Sixteen light duty vehicles equipped with different propulsion technologies (spark-ignition engine, compression-ignition engine, parallel hybrid and full hybrid) were monitored using a portable emission measurement system under real-world driving conditions. The on-road data obtained, combined with the Vehicle Specific Power (VSP) methodology, was used to recreate the dynamic conditions of the NEDC and WLTP Class 3 cycle. Individual vehicle certification values of fuel consumption, CO2, HC and NOx emissions were compared with test cycle estimates based on road measurements. The fuel consumption calculated from on-road data is, on average, 23.9% and 16.3% higher than certification values for the recreated NEDC and WLTP Class 3 cycle, respectively. Estimated HC emissions are lower in gasoline and hybrid vehicles than certification values. Diesel vehicles present higher estimated NOx emissions compared to current certification values (322% and 326% higher for NOx and 244% and 247% higher for HC + NOx for NEDC and WLTP Class 3 cycle, respectively).  相似文献   

17.
There has been rapid growth in interest in real-time transport strategies over the last decade, ranging from automated highway systems and responsive traffic signal control to incident management and driver information systems. The complexity of these strategies, in terms of the spatial and temporal interactions within the transport system, has led to a parallel growth in the application of traffic microsimulation models for the evaluation and design of such measures, as a remedy to the limitations faced by conventional static, macroscopic approaches. However, while this naturally addresses the immediate impacts of the measure, a difficulty that remains is the question of how the secondary impacts, specifically the effect on route and departure time choice of subsequent trips, may be handled in a consistent manner within a microsimulation framework.The paper describes a modelling approach to road network traffic, in which the emphasis is on the integrated microsimulation of individual trip-makers’ decisions and individual vehicle movements across the network. To achieve this it represents directly individual drivers’ choices and experiences as they evolve from day-to-day, combined with a detailed within-day traffic simulation model of the space–time trajectories of individual vehicles according to car-following and lane-changing rules and intersection regulations. It therefore models both day-to-day and within-day variability in both demand and supply conditions, and so, we believe, is particularly suited for the realistic modelling of real-time strategies such as those listed above. The full model specification is given, along with details of its algorithmic implementation. A number of representative numerical applications are presented, including: sensitivity studies of the impact of day-to-day variability; an application to the evaluation of alternative signal control policies; and the evaluation of the introduction of bus-only lanes in a sub-network of Leeds. Our experience demonstrates that this modelling framework is computationally feasible as a method for providing a fully internally consistent, microscopic, dynamic assignment, incorporating both within- and between-day demand and supply dynamics.  相似文献   

18.
Commercial passenger cars are a possible early market segment for plug-in electric vehicles (PEVs). Compared to privately owned vehicles, the commercial vehicle segment is characterized by higher mileage and a higher share of vehicle sales in Germany. To this point, there are only few studies which analyze the commercial passenger car sector and arrive at contradictory results due to insufficient driving profile data with an observation period of only one day. Here, we calculate the market potential of PEVs for the German commercial passenger car sector by determining the technical and economical potential for PEVs in 2020 from multi-day driving profiles. We find that commercial vehicles are better suited for PEVs than private ones since they show higher average annual mileage and drive more regularly. About 87% of the analyzed three-week vehicle profiles can technically be fulfilled by battery electric vehicles (BEVs) with an electric driving range of about 110 km while plug-in hybrid electric vehicles (PHEVs) with an electric range of 40 km could obtain an electric driving share of 60% on average. In moderate energy price scenarios, PEVs can reach a market share of 2–4% in the German commercial passenger car sales by 2020 and especially the large commercial branches (Trade, Manufacturing, Administrative services and Other services) are important. However, our analysis shows a high sensitivity of results to energy and battery prices as well as electric consumptions.  相似文献   

19.
In this numerical study, the fuel-saving potentials of drag-reducing devices retrofitted on heavy vehicles are analysed. Realistic on-road operations are taken into account by simulating typical driving routes on long-haul and urban distributions; variations in vehicle weight are also considered. Results show that the performance of these aerodynamic devices depend both on their functions and how the vehicles are operated. Vehicles on long-haul routes generally save twice as much fuel as those driven in urban areas. The fuel reductions from using selected devices individually on a large truck range from less than 1% to almost 9% of the fuel cost of a vehicle doing an annual mileage is 80,000 miles.  相似文献   

20.
The problem of distributing and routing vehicles in a large automated transportation network may be approached through the design of on-line control algorithms, particularly when the network contains many origin-destination pairs and alternate routes. To develop such algorithms, it is necessary to obtain models that accurately represent the dynamic behavior of vehicles on the guideway network. In this paper, models based on density, flow and average velocity variables are derived for the vehicle-follower longitudinal control scheme. Models suitable for use in analysis and simulation work are developed for links, merges, diverges, and stations. The proposed models are shown to compare favorably with simulation results that use explicit modeling of vehicle dynamic modeling of vehicle dynamic interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号