共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper examines the charging behavior of 7,979 plug-in electric vehicle (PEV) owners in California. The study investigates where people charge be it at home, at work, or at public location, and the level of charging they use including level 1, level 2, or DC fast charging. While plug-in behavior can differ among PEV owners based on their travel patterns, preferences, and access to infrastructure studies often make generalizations about charging behavior. In this study, we explore differences in charging behavior among different types of PEV owners based on their use of charging locations and levels, we then identify factors associated with PEV owner’s choice of charging location and charging level. We identified socio-demographic (gender and age), vehicle characteristics, commute behavior, and workplace charging availability as significant factors related to the choice of charging location. 相似文献
2.
Electric travelling appears to dominate the transport sector in the near future due to the needed transition from internal combustion vehicles (ICV) towards Electric Vehicles (EV) to tackle urban pollution. Given this trend, investigation of the EV drivers’ travel behaviour is of great importance to stakeholders including planners and policymakers, for example in order to locate charging stations. This research explores the Battery Electric Vehicle (BEV) drivers route choice and charging preferences through a Stated Preference (SP) survey. Collecting data from 505 EV drivers in the Netherlands, we report the results of estimating a Mixed Logit (ML) model for those choices. Respondents were requested to choose a route among six alternatives: freeways, arterial ways, and local streets with and without fast charging. Our findings suggest that the classic route attributes (travel time and travel cost), vehicle-related variables (state-of-charge at the origin and destination) and charging characteristics (availability of a slow charging point at the destination, fast charging duration, waiting time in the queue of a fast-charging station) can influence the BEV drivers route choice and charging behaviour significantly. When the state-of-charge (SOC) at the origin is high and a slow charger at the destination is available, routes without fast charging are likely to be preferred. Moreover, local streets (associated with slow speeds and less energy consumption) could be preferred if the SOC at the destination is expected to be low while arterial ways might be selected when a driver must recharge his/her car during the trip via fast charging. 相似文献
3.
Take-up rates of electric vehicles (EV) are increasing and are predicted to accelerate rapidly. Public EV charging networks will be required to support future EV fleets. If unplanned, public charging networks are highly likely to be suboptimal. Planners need to understand and plan for future EV charging infrastructure requirements, particularly public DC fast charging networks, as both the upfront investment costs and the consequences of misallocation are high. However, the task of determining the optimal locations and allocations (types and numbers) of public EV charging infrastructure is complicated as it requires knowledge of many variables. These include EV driver behaviors, driving patterns, predicting evolutionary changes in EV and EV charging technologies, future EV take-up rates, and what investment may or may not occur in the absence of government funding support. 相似文献
4.
We propose an optimization model based on vehicle travel patterns to capture public charging demand and select the locations of public charging stations to maximize the amount of vehicle-miles-traveled (VMT) being electrified. The formulated model is applied to Beijing, China as a case study using vehicle trajectory data of 11,880 taxis over a period of three weeks. The mathematical problem is formulated in GAMS modeling environment and Cplex optimizer is used to find the optimal solutions. Formulating mathematical model properly, input data transformation, and Cplex option adjustment are considered for accommodating large-scale data. We show that, compared to the 40 existing public charging stations, the 40 optimal ones selected by the model can increase electrified fleet VMT by 59% and 88% for slow and fast charging, respectively. Charging demand for the taxi fleet concentrates in the inner city. When the total number of charging stations increase, the locations of the optimal stations expand outward from the inner city. While more charging stations increase the electrified fleet VMT, the marginal gain diminishes quickly regardless of charging speed. 相似文献
5.
The aim of the German Government is the licensing of one million electric vehicles (EV) in Germany until 2020. However, the number of battery electric vehicles (EVs) today still is just above 25,000. There are several reasons for deciding against an EV, but especially low battery ranges as well as too long perceived charging duration inhibit the usage of an EV. To eliminate the negative influence of these two reasons on the decision to purchase an EV, a novel charging technology is established. The rapid-charging technology enables the user to recharge the battery to 80% of its state of charge (SOC) within 20–30 min. For the examination of the technology’s impact from (potential) user’s perspective, users and nonusers of battery electric vehicles were questioned about the perceived additional value of public rapid-charging infrastructure by taking into account different trip purposes and running comparisons to regular charging options. The results show an increased perceived value especially for trips with leisure purpose, considering their share of all trip purposes in Germany, according to the MiD 2008. In order to increase the number of licensed EVs in Germany, the study’s results also suggest further dissemination of information on rapid charging which might influence the perceived usefulness of the technology and consequentially the perceived usefulness of an EV. 相似文献
6.
The transition to electric vehicles (EV) faces two major barriers. On one hand, EV batteries are still expensive and limited by range, owing to the lack of technology breakthrough. On the other hand, the underdeveloped supporting infrastructure, particularly the lack of fast refueling facilities, makes EVs unsuitable for medium and long distance travel. The primary purpose of this study is to better understand these hurdles and to develop strategies to overcome them. To this end, a conceptual optimization model is proposed to analyze travel by EVs along a long corridor. The objective of the model is to select the battery size and charging capacity (in terms of both the charging power at each station and the number of stations needed along the corridor) to meet a given level of service in such a way that the total social cost is minimized. Two extensions of the base model are also considered. The first relaxes the assumption that the charging power at the stations is a continuous variable. The second variant considers battery swapping as an alternative to charging. Our analysis suggests that (1) the current paradigm of charging facility development that focuses on level 2 charging delivers poor level of service for long distance travel; (2) the level 3 charging method is necessary not only to achieve a reasonable level of service, but also to minimize the social cost; (3) investing on battery technology to reduce battery cost is likely to have larger impacts on reducing the charging cost; and (4) battery swapping promises high level of service, but it may not be socially optimal for a modest level of service, especially when the costs of constructing swapping and charging stations are close. 相似文献
7.
Recently, electric vehicles are gaining importance which helps to reduce dependency on oil, increases energy efficiency of transportation, reduces carbon emissions and noise, and avoids tail pipe emissions. Because of short daily driving distances, high mileage, and intermediate waiting time, fossil-fuelled taxi vehicles are ideal candidates for being replaced by battery electric vehicles (BEVs). Moreover, taxi BEVs would increase visibility of electric mobility and therefore encourage others to purchase an electric vehicle. Prior to replacing conventional taxis with BEVs, a suitable charging infrastructure has to be established. This infrastructure consists of a sufficiently dense network of charging stations taking into account the lower driving ranges of BEVs.In this case study we propose a decision support system for placing charging stations in order to satisfy the charging demand of electric taxi vehicles. Operational taxi data from about 800 vehicles is used to identify and estimate the charging demand for electric taxis based on frequent origins and destinations of trips. Next, a variant of the maximal covering location problem is formulated and solved to satisfy as much charging demand as possible with a limited number of charging stations. Already existing fast charging locations are considered in the optimization problem. In this work, we focus on finding regions in which charging stations should be placed rather than exact locations. The exact location within an area is identified in a post-optimization phase (e.g., by authorities), where environmental conditions are considered, e.g., the capacity of the power network, availability of space, and legal issues.Our approach is implemented in the city of Vienna, Austria, in the course of an applied research project that has been conducted in 2014. Local authorities, power network operators, representatives of taxi driver guilds as well as a radio taxi provider participated in the project and identified exact locations for charging stations based on our decision support system. 相似文献
8.
Electric Vehicles (EV) are highly beneficial due to their reliance on electricity and Climate Change response yet EV sales are lower than would be expected due to range anxiety. If a potential buyer cannot be assured of having constantly-available and compatible charging stations, they will not purchase an EV. To increase the sales of EVs through improved charger availability, this paper examines parking configurations, charger design, convenient “EV only” parking, free charging, etiquette in unplugging another’s vehicle, and legislation. Data were derived from academic publications, trade market press, conversations, personal observations, and laws. The results show that chargers are often in a lot’s corner and thus accessible only to one vehicle, EV owners leave their charged car in the space, drivers use EV spaces for parking, etiquette cards are not understood, and legislation makes it illegal to unplug another’s EV. Improvements include less convenient charger spots, an octopus charger in the middle of the parking lot, modest charging fees to foster turnover, chargers that indicate an EV is charged, education and legislation about etiquette cards, and legislation that allows an individual to unplug another’s charged EV. Improvements to charging should be implemented simultaneously to lessen range anxiety and realize the environmental benefits from reductions in gasoline consumption and mobile source air pollution. 相似文献
9.
Shared autonomous vehicles, or SAVs, have attracted significant public and private interest because of their opportunity to simplify vehicle access, avoid parking costs, reduce fleet size, and, ultimately, save many travelers time and money. One way to extend these benefits is through an electric vehicle (EV) fleet. EVs are especially suited for this heavy usage due to their lower energy costs and reduced maintenance needs. As the price of EV batteries continues to fall, charging facilities become more convenient, and renewable energy sources grow in market share, EVs will become more economically and environmentally competitive with conventionally fueled vehicles. EVs are limited by their distance range and charge times, so these are important factors when considering operations of a large, electric SAV (SAEV) fleet.This study simulated performance characteristics of SAEV fleets serving travelers across the Austin, Texas 6-county region. The simulation works in sync with the agent-based simulator MATSim, with SAEV modeling as a new mode. Charging stations are placed, as needed, to serve all trips requested (under 75 km or 47 miles in length) over 30 days of initial model runs. Simulation of distinctive fleet sizes requiring different charge times and exhibiting different ranges, suggests that the number of station locations depends almost wholly on vehicle range. Reducing charge times does lower fleet response times (to trip requests), but increasing fleet size improves response times the most. Increasing range above 175 km (109 miles) does not appear to improve response times for this region and trips originating in the urban core are served the quickest. Unoccupied travel accounted for 19.6% of SAEV mileage on average, with driving to charging stations accounting for 31.5% of this empty-vehicle mileage. This study found that there appears to be a limit on how much response time can be improved through decreasing charge times or increasing vehicle range. 相似文献
10.
Charging infrastructure is critical to the development of electric vehicle (EV) system. While many countries have implemented great policy efforts to promote EVs, how to build charging infrastructure to maximize overall travel electrification given how people travel has not been well studied. Mismatch of demand and infrastructure can lead to under-utilized charging stations, wasting public resources. Estimating charging demand has been challenging due to lack of realistic vehicle travel data. Public charging is different from refueling from two aspects: required time and home-charging possibility. As a result, traditional approaches for refueling demand estimation (e.g. traffic flow and vehicle ownership density) do not necessarily represent public charging demand. This research uses large-scale trajectory data of 11,880 taxis in Beijing as a case study to evaluate how travel patterns mined from big-data can inform public charging infrastructure development. Although this study assumes charging stations to be dedicated to a fleet of PHEV taxis which may not fully represent the real-world situation, the methodological framework can be used to analyze private vehicle trajectory data as well to improve our understanding of charging demand for electrified private fleet. Our results show that (1) collective vehicle parking “hotspots” are good indicators for charging demand; (2) charging stations sited using travel patterns can improve electrification rate and reduce gasoline consumption; (3) with current grid mix, emissions of CO2, PM, SO2, and NOx will increase with taxi electrification; and (4) power demand for public taxi charging has peak load around noon, overlapping with Beijing’s summer peak power. 相似文献
11.
The transportation sector is undergoing three revolutions: shared mobility, autonomous driving, and electrification. When planning the charging infrastructure for electric vehicles, it is critical to consider the potential interactions and synergies among these three emerging systems. This study proposes a framework to optimize charging infrastructure development for increasing electric vehicle (EV) adoption in systems with different levels of autonomous vehicle adoption and ride sharing participation. The proposed model also accounts for the pre-existing charging infrastructure, vehicle queuing at the charging stations, and the trade-offs between building new charging stations and expanding existing ones with more charging ports.Using New York City (NYC) taxis as a case study, we evaluated the optimum charging station configurations for three EV adoption pathways. The pathways include EV adoption in a 1) traditional fleet (non-autonomous vehicles without ride sharing), 2) future fleet (fully autonomous vehicles with ride sharing), and 3) switch-over from traditional to future fleet. Our results show that, EV adoption in a traditional fleet requires charging infrastructure with fewer stations that each has more charging ports, compared to the future fleet which benefits from having more scattered charging stations. Charging will only reduce the service level by 2% for a future fleet with 100% EV adoption. EV adoption can reduce CO2 emissions of NYC taxis by up to 861 Tones/day for the future fleet and 1100 Tones/day for the traditional fleet. 相似文献
12.
We assess existing and potential charging infrastructure for plug-in vehicles in US households using data from the American Housing Survey and the Residential Energy Consumption Survey. We estimate that less than half of US vehicles have reliable access to a dedicated off-street parking space at an owned residence where charging infrastructure could be installed. Specifically, while approximately 79% households have off-street parking for at least some of their vehicles, only an estimated 56% of vehicles have a dedicated off-street parking space – and only 47% at an owned residence. Approximately 22% vehicles currently have access to a dedicated home parking space within reach of an outlet sufficient to recharge a small plug-in vehicle battery pack overnight. Access to faster charging, required for vehicles with longer electric range, will usually require infrastructure investment ranging from several hundred to several thousand dollars, depending on panel and construction requirements. We discuss sensitivity of results to uncertain factors and implications for the potential of mainstream penetration of plug-in vehicles. 相似文献
13.
Battery-only electric vehicles (BEVs) generally offer better air quality through lowered emissions, along with energy savings and security. The issue of long-duration battery charging makes charging-station placement and design key for BEV adoption rates. This work uses genetic algorithms to identify profit-maximizing station placement and design details, with applications that reflect the costs of installing, operating, and maintaining service equipment, including land acquisition. Fast electric vehicle charging stations (EVCSs) are placed across a congested city's network subject to stochastic demand for charging under a user-equilibrium traffic assignment. BEV users’ station choices consider endogenously determined travel times and on-site charging queues. The model allows for congested-travel and congested-station feedback into travelers’ route choices under elastic demand and BEV owners’ station choices, as well as charging price elasticity for BEV charging users.Boston-network results suggest that EVCSs should locate mostly along major highways, which may be a common finding for other metro settings. If 10% of current EV owners seek to charge en route, a user fee of $6 for a 30-min charging session is not enough for station profitability under a 5-year time horizon in this region. However, $10 per BEV charging delivers a 5-year profit of $0.82 million, and 11 cords across 3 stations are enough to accommodate a near-term charging demand in this Boston-area application. Shorter charging sessions, higher fees, and/or allowing for more cords per site also increase profits generally, everything else constant. Power-grid and station upgrades should keep pace with demand, to maximize profits over time, and avoid on-site congestion. 相似文献
14.
Upward expectations of future electric vehicle (EV) growth pose the question about the future load on the electricity grid. While existing literature on EV charging demand management has focused on technical aspects and considered EV-owners as utility maximizers, this study proposes a behavioural model incorporating psychological aspects relevant to EV-owners facing charging decisions and interacting with the supplier. The behavioural model represents utility maximization under myopic loss aversion (MLA) within an ultimatum game (UG) framework where the two players are the EV-owner and the electricity supplier. Experimental economics allowed testing the validity of the behavioural model by designing three experiments where a potential EV-owner faces three decisions (i.e., to postpone EV charging to off-peak periods for a discount proposed by the supplier, the amount of discount to request for off-peak charging at times decided by the supplier, and the amount of discount to accept for supplier-controlled charging) under two contract durations (i.e., short-term, long-term). Findings from the experiments show that indeed potential EV-owners perform charging decisions while being affected by MLA resulting from monetary considerations and the UG participation, and that presenting long-term contracts help potential EV-owners to curtail MLA behaviour and minimise cost even though the assumption of utility maximization is violated. 相似文献
15.
As charging-while-driving (CWD) technology advances, charging lanes can be deployed in the near future to charge electric vehicles (EVs) while in motion. Since charging lanes will be costly to deploy, this paper investigates the deployment of two types of charging facilities, namely charging lanes and charging stations, along a long traffic corridor to explore the competitiveness of charging lanes. Given the charging infrastructure supply, i.e., the number of charging stations, the number of chargers installed at each station, the length of charging lanes, and the charging prices at charging stations and lanes, we analyze the charging-facility-choice equilibrium of EVs. We then discuss the optimal deployment of charging infrastructure considering either the public or private provision. In the former, a government agency builds and operates both charging lanes and stations to minimize social cost, while in the latter, charging lanes and stations are assumed to be built and operated by two competing private companies to maximize their own profits. Numerical experiments based on currently available empirical data suggest that charging lanes are competitive in both cases for attracting drivers and generating revenue. 相似文献
16.
In this paper we examine what characterizes second-best road prices targeting external costs from driving electric (EV) and conventional (ICEV) vehicles when there are distortionary labor taxes and binding government budget constraints. Further, we examine how this second-best pricing fits with government set goals of reducing CO2 emissions. The paper further develops an analytical framework for assessing first- and second-best road prices on vehicle kilometers, extending it to include EVs and externalities that vary geographically and by time of day. We find that optimal road prices largely vary with external cost, but are also significantly affected by the interactions with the rest of the fiscal system. Not surprisingly, the highest road prices should be for ICEVs in large cities during peak hours due to high external costs. More surprisingly, we find that the road price for ICEVs in rural areas should be lower than that for EVs due to large fiscal interaction effects. These road prices give large welfare gains, but they lead to no reduction in carbon emissions when applying the currently recommended social cost of carbon. 相似文献
17.
Electric vehicles (EVs) have been regarded as effective options for solving the environmental and energy problems in the field of transportation. However, given the limited driving range and insufficient charging stations, searching and selecting charging stations is an important issue for EV drivers during trips. A smart charging service should be developed to help address the charging issue of EV drivers, and a practical algorithm for charging guidance is required to realise it. This study aims to design a geometry-based algorithm for charging guidance that can be effectively applied in the smart charging service. Geographic research findings and geometric approaches are applied to design the algorithm. The algorithm is practical because it is based on the information from drivers’ charging requests, and its total number of calculations is significantly less than that of the conventional shortest-first algorithm. The algorithm is effective because it considers the consistency of direction trend between the charging route and the destination in addition to the travel distance, which conforms to the travel demands of EV drivers. Moreover, simulation examples are presented to demonstrate the proposed algorithm. Results of the proposed algorithm are compared with those of the other two algorithms, which show that the proposed algorithm can obtain a better selection of charging stations for EV drivers from the perspective of entire travel chains and take a shorter computational time. 相似文献
18.
Proposed legislation in British Columbia would require 30 percent of new car sales to be zero-emission vehicles by 2030, and 100 percent by 2040. The growing amount of energy demand and usage data from smart meters or internet of things (IoT) devices enables new research areas. We reporton machine learning approaches to reevaluate the impacts of battery electric vehicles (BEV) on the built environment. We developed a daily power profile analysis based on unsupervised learning, to understand the underlying structure of building and BEV charging station demand data. In addition, we have implemented a load aggregation method based on the features revealed by a clustering process. This aggregation method simulates the electricity demand of an arbitrary number of charging stations, all of which are connected to the main feeder of a building. Several scenarios are simulated using charging stations and building demand data from the University of British Columbia campus in Vancouver. Results for 150 charging stations revealed that the feeder load could increase from a peak load scenario of 300 kW to more than 1000 kW during a high-consumption weekday. 相似文献
20.
This study investigates the cost competitiveness of different types of charging infrastructure, including charging stations, charging lanes (via charging-while-driving technologies) and battery swapping stations, in support of an electric public transit system. To this end, we first establish mathematical models to investigate the optimal deployment of various charging facilities along the transit line and determine the optimal size of the electric bus fleet, as well as their batteries, to minimize total infrastructure and fleet costs while guaranteeing service frequency and satisfying the charging needs of the transit system. We then conduct an empirical analysis utilizing available real-world data. The results suggest that: (1) the service frequency, circulation length, and operating speed of a transit system may have a great impact on the cost competitiveness of different charging infrastructure; (2) charging lanes enabled by currently available inductive wireless charging technology are cost competitive for most of the existing bus rapid transit corridors; (3) swapping stations can yield a lower total cost than charging lanes and charging stations for transit systems with high operating speed and low service frequency; (4) charging stations are cost competitive only for transit systems with very low service frequency and short circulation; and (5) the key to making charging lanes more competitive for transit systems with low service frequency and high operating speed is to reduce their unit-length construction cost or enhance their charging power. 相似文献