首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
相比于一般交通事故,重大道路交通事故的特征及其影响机理会有所差异,本文旨在研究重大道路交通事故的分布特征及其主要影响因素。收集2014至2018年的重大道路交通事故数据,从驾驶员行为、车辆状况、道路线形和时空分布方面对重大道路交通事故的基本特征进行分析,采用关联规则技术深入挖掘重大道路交通事故多因素的影响机理。从人、车、道路和环境四个方面,重点讨论了重大道路交通事故中的两因素和三因素交互作用的影响机理,并据此提出了针对性的事故预防措施。  相似文献   

2.
Traffic flow pattern identification, as well as anomaly detection, is an important component for traffic operations and control. To reveal the characteristics of regional traffic flow patterns in large road networks, this paper employs dictionary-based compression theory to identify the features of both spatial and temporal patterns by analyzing the multi-dimensional traffic-related data. An anomaly index is derived to quantify the network traffic in both spatial and temporal perspectives. Both pattern identifications are conducted in three different geographic levels: detector, intersection, and sub-region. From different geographic levels, this study finds several important features of traffic flow patterns, including the geographic distribution of traffic flow patterns, pattern shifts at different times-of-day, pattern fluctuations over different days, etc. Both spatial and temporal traffic flow patterns defined in this study can jointly characterize pattern changes and provide a good performance measure of traffic operations and management. The proposed method is further implemented in a case study for the impact of a newly constructed subway line. The before-and-after study identifies the major changes of surrounding road traffic near the subway stations. It is found that new metro stations attract more commute traffic in weekdays as well as entertaining traffic during weekends.  相似文献   

3.
This paper presents a novel methodology to control urban traffic noise under the constraint of environmental capacity. Considering the upper limits of noise control zones as the major bottleneck to control the maximum traffic flow is a new idea. The urban road network traffic is the mutual or joint behavior of public self-selection and management decisions, so is a typical double decision optimization problem.The proposed methodology incorporates theoretically model specifications. Traffic noise calculation model and traffic assignment model for O–D matrix are integrated based on bi-level programming method which follows an iterated process to obtain the optimal solution. The upper level resolves the question of how to sustain the maximum traffic flow with noise capacity threshold in a feasible road network. The user equilibrium method is adopted in the lower layer to resolve the O–D traffic assignment.The methodology has been applied to study area of QingDao, China. In this illustrative case, the noise pollution level values of optimal solution could satisfy the urban environmental noise capacity constraints. Moreover, the optimal solution was intelligently adjusted rather than simply reducing the value below a certain threshold. The results indicate that the proposed methodology is feasible and effective, and it can provide a reference for a sustainable development and noise control management of the urban traffic.  相似文献   

4.
Data-driven traffic management and control has attracted much attention recently. This paper conducts a series of coherent analyses based on geocoded data to understand the distribution characteristics of bus operational speed and to explore the potential applications of speed distributions. First, an original bipartite model is adopted for capturing instantaneous speed where the suspended and moving states are considered separately and a two-component mixed Weibull distribution is used to model the speed distribution in moving states. The mixed Gaussian distribution with variable components is found to be capable of expressing the speed distribution patterns of different road sections. Second, elaborate analyses on the basis of speed distribution modelling are conducted: (i) regression analyses are conducted to explore the correlations between parameters of instantaneous speed distributions and traffic related factors; (ii) a powerful clustering method using Kullback-Leibler divergence as the distance measure is proposed to grade the road sections of a bus route. These results can be utilized in fields such as bus operations management, bus priority signal control and infrastructure transformation aiming to improve the efficiency of bus operations systems.  相似文献   

5.
Short‐term traffic flow prediction in urban area remains a difficult yet important problem in intelligent transportation systems. Current spatio‐temporal‐based urban traffic flow prediction techniques trend aims to discover the relationship between adjacent upstream and downstream road segments using specific models, while in this paper, we advocate to exploit the spatial and temporal information from all available road segments in a partial road network. However, the available traffic states can be high dimensional for high‐density road networks. Therefore, we propose a spatio‐temporal variable selection‐based support vector regression (VS‐SVR) model fed with the high‐dimensional traffic data collected from all available road segments. Our prediction model can be presented as a two‐stage framework. In the first stage, we employ the multivariate adaptive regression splines model to select a set of predictors most related to the target one from the high‐dimensional spatio‐temporal variables, and different weights are assigned to the selected predictors. In the second stage, the kernel learning method, support vector regression, is trained on the weighted variables. The experimental results on the real‐world traffic volume collected from a sub‐area of Shanghai, China, demonstrate that the proposed spatio‐temporal VS‐SVR model outperforms the state‐of‐the‐art. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Vehicle speed is an important attribute for analysing the utility of a transport mode. The speed relationship between multiple modes of transport is of interest to traffic planners and operators. This paper quantifies the relationship between bus speed and average car speed by integrating Bluetooth data and transit signal priority data from the urban network in Brisbane, Australia. The method proposed in this paper is the first of its kind to relate bus speed and average car speed by integrating multi-source traffic data in a corridor-based method. Three transferable regression models relating not-in-service bus, in-service bus during peak periods and in-service bus during off-peak periods with average car speed are proposed. The models are cross-validated and the interrelationships are significant.  相似文献   

7.
Urban travel time information is of great importance for many levels of traffic management and operation. This paper develops a tensor-based Bayesian probabilistic model for citywide and personalized travel time estimation, using the large-scale and sparse GPS trajectories generated by taxicabs. Combined with the knowledge learned from historical trajectories, travel times of different drivers on all road segments in some time slots are modeled with a 3-order tensor. This tensor-based modeling approach incorporates both the spatial correlation between different road segments and the person-specific variation between different drivers, as well as the coarse-grain temporal correlation between recent and historical traffic conditions and the fine-grain temporal correlation between different time slots. To account for the variability caused by the intrinsic uncertainties in urban road network, each travel time entry in the built tensor is treated as a variable following a log-normal distribution. With the help of the fully Bayesian treatment, the model achieves automatic hyper-parameter tuning and model complexity controlling, and therefore the problem of over-fitting is prevented even when the used data is large-scale and sparse. The proposed model is applied to a real case study on the citywide road network of Beijing, China, using the large-scale and sparse GPS trajectories collected from over 32,670 taxicabs for a period of two months. Empirical results of extensive experiments demonstrate that the proposed model provides an effective and robust approach for urban travel time estimation and outperforms the considered competing methods.  相似文献   

8.
Noise pollution in urban areas has many harmful effects on the citizens. There are varieties of noise generation sources of which the traffic noise could be a major source. The point which is perhaps less noticed is that sound level is not the only parameter to indicate the extent and intensity of noise pollution. Situation of urban land uses, distribution of population centers and types of passages can deeply affect the concern on this environmental issue but not with a similar ratio. This article presents an overlaying technique to define noise prone areas using all different factors involved. A case study was carried out in the District 14 of Tehran Metropolitan City where there are busy streets and highways. For this purpose, the share of each criterion in noise pollution intensity was determined using Analytical Hierarchy Process (AHP). Afterwards, the map layers were overlaid based upon the relative importance of the criteria to get the final map on which the noise prone areas are specified. The developed method could be used as a tool for indirect estimation of noise pollution by which instead of direct measurement of the equivalent sound level, it would be possible to predict noise susceptible areas considering the most important influential factors.  相似文献   

9.
This paper discusses the areawide Dynamic ROad traffic NoisE (DRONE) simulator, and its implementation as a tool for noise abatement policy evaluation. DRONE involves integrating a road traffic noise estimation model with a traffic simulator to estimate road traffic noise in urban networks. An integrated traffic simulation-noise estimation model provides an interface for direct input of traffic flow properties from simulation model to noise estimation model that in turn estimates the noise on a spatial and temporal scale. The output from DRONE is linked with a geographical information system for visual representation of noise levels in the form of noise contour maps.  相似文献   

10.
Real-time estimation of the traffic state in urban signalized links is valuable information for modern traffic control and management. In recent years, with the development of in-vehicle and communication technologies, connected vehicle data has been increasingly used in literature and practice. In this work, a novel data fusion approach is proposed for the high-resolution (second-by-second) estimation of queue length, vehicle accumulation, and outflow in urban signalized links. Required data includes input flow from a fixed detector at the upstream end of the link as well as location and speed of the connected vehicles. A probability-based approach is derived to compensate the error associated with low penetration rates while estimating the queue tail location, which renders the proposed methodology more robust to varying penetration rates of connected vehicles. A well-defined nonlinear function based on traffic flow theory is developed to attain the number of vehicles inside the queue based on queue tail location and average speed of connected vehicles. The overall scheme is thoroughly tested and demonstrated in a realistic microscopic simulation environment for three types of links with different penetration rates of connected vehicles. In order to test the efficiency of the proposed methodology in case that data are available at higher sampling times, the estimation procedure is also demonstrated for different time resolutions. The results demonstrate the efficiency and accuracy of the approach for high-resolution estimation, even in the presence of measurement noise.  相似文献   

11.
Road traffic noise models are fundamental tools for designing and implementing appropriate prevention plans to minimize and control noise levels in urban areas. The objective of this study is to develop a traffic noise model to simulate the average equivalent sound pressure level at road intersections based on traffic flow and site characteristics, in the city of Cartagena de Indias (Cartagena), Colombia. Motorcycles are included as an additional vehicle category since they represent more than 30% of the total traffic flow and a distinctive source of noise that needs to be characterized. Noise measurements are collected using a sound level meter Type II. The data analysis leads to the development of noise maps and a general mathematical model for the city of Cartagena, Colombia, which correlates the sound levels as a function of vehicle flow within road intersections. The highest noise levels were 79.7 dB(A) for the road intersection María Auxiliadora during the week (business days) and 77.7 dB(A) for the road intersection India Catalina during weekends (non-business days). Although traffic and noise are naturally related, the intersections with higher vehicle flow did not have the highest noise levels. The roadway noise for these intersections in the city of Cartagena exceeds current limit standards. The roadway noise model is able to satisfactorily predict noise emissions for road intersections in the city of Cartagena, Colombia.  相似文献   

12.
The key factors that determine the prices of real estate are location, technical standard of property as well as the local environment. In urban agglomerations, road traffic noise has a considerable impact on the purchasing decisions made by apartment buyers. This is a widespread problem in Central-Eastern Europe. The main objective of this study was to verify the working hypothesis that apartment prices are correlated with traffic noise levels in Olsztyn, the capital city of the Region of Warmia and Mazury in north-eastern Poland.The study was carried out in four principal stages. Firstly, traffic noise intensity was determined for apartments (objects of real estate transactions concluded in 2013), based on an acoustic map for the city of Olsztyn. The map was developed in line with the provisions of Directive 2002/49/EC of the European Parliament and of the Council of 25 June 2002 relating to the assessment and management of environmental noise. Secondly, the values of the Noise Depreciation Sensitivity Index (NDSI) were calculated. NDSI determines the percentage change in property prices per dB increase in noise levels. The distribution of unit prices of apartments was mapped relative to noise levels, and the relationships between the analyzed variables were assessed. Thirdly, linear correlations between the unit prices of apartments and noise levels were analyzed. The strength and direction of relationships between the analyzed parameters were determined based on Pearson’s correlation coefficient. In the last stage, the distribution of the unit prices of apartments was mapped by ordinary kriging, a geostatistical estimation method. The research hypothesis was confirmed by comparing the spatial distribution of traffic noise levels measured in stage 1 with the spatial distribution of apartment prices.  相似文献   

13.
文章应用市场估值法、享乐价格法和意愿调查价值评估法对城市道路交通噪声经济损失的货币化进行分析,并以北京市为例,计算评估了城市道路交通噪声带来的经济损失。  相似文献   

14.
The aim of this research is the implementation of a GPS-based modelling approach for improving the characterization of vehicle speed spatial variation within urban areas, and a comparison of the resulting emissions with a widely used approach to emission inventory compiling. The ultimate goal of this study is to evaluate and understand the importance of activity data for improving the road transport emission inventory in urban areas. For this purpose, three numerical tools, namely, (i) the microsimulation traffic model (VISSIM); (ii) the mesoscopic emissions model (TREM); and (iii) the air quality model (URBAIR), were linked and applied to a medium-sized European city (Aveiro, Portugal). As an alternative, traffic emissions based on a widely used approach are calculated by assuming a vehicle speed value according to driving mode. The detailed GPS-based modelling approach results in lower total road traffic emissions for the urban area (7.9, 5.4, 4.6 and 3.2% of the total PM10, NOx, CO and VOC daily emissions, respectively). Moreover, an important variation of emissions was observed for all pollutants when analysing the magnitude of the 5th and 95th percentile emission values for the entire urban area, ranging from −15 to 49% for CO, −14 to 31% for VOC, −19 to 46% for NOx and −22 to 52% for PM10. The proposed GPS-based approach reveals the benefits of addressing the spatial and temporal variability of the vehicle speed within urban areas in comparison with vehicle speed data aggregated by a driving mode, demonstrating its usefulness in quantifying and reducing the uncertainty of road transport inventories.  相似文献   

15.
One of the most difficult and expensive tasks in making noise pollution maps is the collection and processing of the data needed to create acoustic models. In the case of road traffic noise maps, obtaining speed data for light and heavy vehicles a problem that has usually been avoided by using a road’s speed limit or by making assumptions based on experience from similar road types. Here global positioning systems-based techniques are applied for acquiring vehicle speed data and adapted to fulfill the requirements of noise prediction models.  相似文献   

16.
Increased speed variation on urban arterials is associated with reductions in both operational performance and safety. Traffic flow, mean speed, traffic control parameters and geometric design features are known to affect speed variation. An exploratory study of the relationships among these variables could provide a foundation for improving the operational and safety performance of urban arterials, however, such a study has been hampered by problems in measuring speeds. The measurement of speed has traditionally been accomplished using spot speed collection methods such as radar, laser and loop detectors. These methods can cover only limited locations, and consequently are not able to capture speed distributions along an entire network, or even throughout any single road segment. In Shanghai, it is possible to acquire the speed distribution of any roadway segment, over any period of interest, by capturing data from Shanghai’s 50,000+ taxis equipped with Global Positional Systems (GPS). These data, hereafter called Floating Car Data, were used to calculate mean speed and speed variation on 234 road segments from eight urban arterials in downtown Shanghai. Hierarchical models with random variables were developed to account for spatial correlations among segments within each arterial and heterogeneities among arterials. Considering that traffic demand changes throughout the day, AM peak, Noon off-peak, and PM peak hours were studied separately. Results showed that increases in number of lanes and number of access points, the presence of bus stops and increases in mean speed were all associated with increased speed variation, and that increases in traffic volume and traffic signal green times were associated with reduced speed variation. These findings can be used by engineers to minimize speed differences during the road network planning stage and continuing through the traffic management phase.  相似文献   

17.
Traffic volume data are key inputs to many applications in highway design and planning. But these data are collected in only a limited number of road locations due to the cost involved. This paper presents an approach for estimating daily and hourly traffic volumes on intercity road locations combining clustering and regression modelling techniques. With the aim of applying the procedure to any road location, it proposes the use of roadway attributes and socioeconomic characteristics of nearby cities as explanatory variables, together with a set of previously discovered patterns with the hourly traffic percent distribution. Test results show that the proposed approach significantly produces accurate estimates of daily volumes for most locations. The accuracy at hourly level is a bit more reduced but, for periods when traffic is significant, more than half of the estimates are within 20% of absolute percentage error. Moreover, the main peak period is approximately identified for most cases. These findings together with its great applicability make this approach attractive for planners when no traffic data are available and an estimate is helpful.  相似文献   

18.
A smart design of transport systems involves efficient use and allocation of the limited urban road capacity in the multimodal environment. This paper intends to understand the system-wide effect of dividing the road space to the private and public transport modes and how the public transport service provider responds to the space changes. To this end, the bimodal dynamic user equilibrium is formulated for separated road space. The Macroscopic Fundamental Diagram (MFD) model is employed to depict the dynamics of the automobile traffic for its state-dependent feature, its inclusion of hypercongestion, and its advantage of capturing network topology. The delay of a bus trip depends on the running speed which is in turn affected by bus lane capacity and ridership. Within the proposed bimodal framework, the steady-state equilibrium traffic characteristics and the optimal bus fare and service frequency are analytically derived. The counter-intuitive properties of traffic condition, modal split, and behavior of bus operator in the hypercongestion are identified. To understand the interaction between the transport authority (for system benefit maximization) and the bus operator (for its own benefit maximization), we examine how the bus operator responds to space changes and how the system benefit is influenced with the road space allocation. With responsive bus service, the condition, under which expanding bus lane capacity is beneficial to the system as a whole, has been analytically established. Then the model is applied to the dynamic framework where the space allocation changes with varying demand and demand-responsive bus service. We compare the optimal bus services under different economic objectives, evaluate the system performance of the bimodal network, and explore the dynamic space allocation strategy for the sake of social welfare maximization.  相似文献   

19.
Short-term traffic flow prediction is an integral part in most of Intelligent Transportation Systems (ITS) research and applications. Many researchers have already developed various methods that predict the future traffic condition from the historical database. Nevertheless, there has not been sufficient effort made to study how to identify and utilize the different factors that affect the traffic flow. In order to improve the performance of short-term traffic flow prediction, it is necessary to consider sufficient information related to the road section to be predicted. In this paper, we propose a method of constructing traffic state vectors by using mutual information (MI). First, the variables with different time delays are generated from the historical traffic time series, and the spatio-temporal correlations between the road sections in urban road network are evaluated by the MI. Then, the variables with the highest correlation related to the target traffic flow are selected by using a greedy search algorithm to construct the traffic state vector. The K-Nearest Neighbor (KNN) model is adapted for the application of the proposed state vector. Experimental results on real-world traffic data show that the proposed method of constructing traffic state vector provides good prediction accuracy in short-term traffic prediction.  相似文献   

20.
The k-nearest neighbor (KNN) model is an effective statistical model applied in short-term traffic forecasting that can provide reliable data to guide travelers. This study proposes an improved KNN model to enhance forecasting accuracy based on spatiotemporal correlation and to achieve multistep forecasting. The physical distances among road segments are replaced with equivalent distances, which are defined by the static and dynamic data collected from real road networks. The traffic state of a road segment is described by a spatiotemporal state matrix instead of only a time series as in the original KNN model. The nearest neighbors are selected according to the Gaussian weighted Euclidean distance, which adjusts the influences of time and space factors on spatiotemporal state matrices. The forecasting accuracies of the improved KNN and of four other models are compared, and experimental results indicate that the improved KNN model is more appropriate for short-term traffic multistep forecasting than the other models are. This study also discusses the application of the improved KNN model in a time-varying traffic state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号