共查询到20条相似文献,搜索用时 15 毫秒
1.
The analysis of the causes behind the appearance and propagation of delays is one of the major topics inside Air Transport Management research. Existing research focuses by and large on Air Traffic Flow Management regulations and reactionary delays; less attention has been devoted to the study of the mechanisms governing the generation and absorption of delays while airborne, in spite of their important economical and environmental consequences. Here we present a methodology to detect delay-generating events, based on the comparison of planned and real trajectories; these events are then used to characterise several aspects of the dynamics of the system, e.g. its resilience. We apply this methodology to a historical data set of flights crossing the European airspace during 2011, and observe an overall resilient system, able to absorb as much delays as it generates; yet resilience is not constant, but strongly depends on the phase of the flight, and shows high spatial and temporal heterogeneities. We anticipate the proposed methodology to open new doors for the development of a better systemic performance, by enabling the characterisation and understanding of this fundamental type of delay. 相似文献
2.
In this paper, we analyze the effectiveness of the 2010 Tarmac Delay Rule from a passenger-centric point of view. The Tarmac Delay Rule stipulates that aircraft lift-off, or an opportunity for passengers to deplane, must occur no later than 3 h after the cabin door closure at the gate of the departure airport; and that an opportunity for passengers to deplane must occur no later than 3 h after the touchdown at the arrival airport. The Tarmac Delay Rule aims to protect enplaned passengers on commercial aircraft from excessively long delays on the tarmac upon taxi-out or taxi-in, and monetarily penalizes airlines that violate the stipulated 3-h tarmac time limit. Comparing the actual flight schedule and delay data after the Tarmac Delay Rule was in effect with that before, we find that the Rule has been highly effective in reducing the frequency of occurrence of long tarmac times. However, another significant effect of the rule has been the rise in flight cancellation rates. Cancellations result in passengers requiring rebooking, and often lead to extensive delay in reaching their final destinations. Using an algorithm to estimate passenger delay, we quantify delays to passengers in 2007, before the Tarmac Delay Rule was enacted, and compare these delays to those estimated for hypothetical scenarios with the Tarmac Delay Rule in effect for that same year. Our delay estimates are calculated using U.S. Department of Transportation data from 2007. Through our results and several sensitivity analyses, we show that the overall impact of the current Tarmac Delay Rule is a significant increase in passenger delays, especially for passengers scheduled to travel on the flights which are at risk of long tarmac delays. We evaluate the impacts on passengers of a number of rule variations, including changes to the maximum time on the tarmac, and variations in that maximum by time-of-day. Through extensive scenario analyses, we conclude that a better balance between the conflicting objectives of reducing the frequency of long tarmac times and reducing total passenger delays can be achieved through a modified version of the existing rule. This modified version involves increasing the tarmac time limit to 3.5 h and only applying the rule to flights with planned departure times before 5pm. Finally, in order to implement the Rule more effectively, we suggest the tarmac time limit to be defined in terms of the time when the aircraft begin returning to the gate instead of being defined in terms of the time when passengers are allowed to deplane. 相似文献
3.
Milan Janic Jaap Vleugel 《Transportation Research Part D: Transport and Environment》2012,17(2):154-160
This paper develops a method for analysing and estimating savings in externalities that could be achieved by substituting truck with rail freight services in a given Trans-European freight transport corridor. The externalities affected include energy consumption, emissions of greenhouse gases, noise, congestion, and traffic incidents/accidents. The European Commission transport policy aims to provide an institutional framework for the medium- to long-term sustainable development of the transport sector. An important aspect of this policy is to stimulating the modal shift from truck to rail freight transport in inland Trans-European corridors. 相似文献
4.
The present paper presents a data-driven method for assessing the resilience of the European passenger transport network during extreme weather events. The method aims to fill in the gap of current research efforts regarding the quantification of impacts attributed to climate change and the identification of substitutability opportunities between transport modes in case of extreme weather events (EWE). The proposed method consists of three steps concerning the probability estimation of an EWE occurring within a transportation network, the assessment of its impacts and the passengers’ flow shift between various transport modes. A mathematical formulation for the proposed data-driven method is provided and applied in an indicative European small-scale network, in order to assess the impacts of EWE on modal choice. Results are expressed in passenger differentiated flows and the paper concludes with future research steps and directions. 相似文献
5.
This paper deals with developing a methodology for estimating the resilience, friability, and costs of an air transport network affected by a large-scale disruptive event. The network consists of airports and airspace/air routes between them where airlines operate their flights. Resilience is considered as the ability of the network to neutralize the impacts of disruptive event(s). Friability implies reducing the network’s existing resilience due to removing particular nodes/airports and/or links/air routes, and consequently cancelling the affected airline flights. The costs imply additional expenses imposed on airports, airlines, and air passengers as the potentially most affected actors/stakeholders due to mitigating actions such as delaying, cancelling and rerouting particular affected flights. These actions aim at maintaining both the network’s resilience and safety at the acceptable level under given conditions.Large scale disruptive events, which can compromise the resilience and friability of a given air transport network, include bad weather, failures of particular (crucial) network components, the industrial actions of the air transport staff, natural disasters, terrorist threats/attacks and traffic incidents/accidents.The methodology is applied to the selected real-life case under given conditions. In addition, this methodology could be used for pre-selecting the location of airline hub airport(s), assessing the resilience of planned airline schedules and the prospective consequences, and designing mitigating measures before, during, and in the aftermath of a disruptive event. As such, it could, with slight modifications, be applied to transport networks operated by other transport modes. 相似文献
6.
This paper deals with developing a methodology for estimating the resilience, friability, and costs of an air transport network affected by a large-scale disruptive event. The network consists of airports and airspace/air routes between them where airlines operate their flights. Resilience is considered as the ability of the network to neutralize the impacts of disruptive event(s). Friability implies reducing the network’s existing resilience due to removing particular nodes/airports and/or links/air routes, and consequently cancelling the affected airline flights. The costs imply additional expenses imposed on airports, airlines, and air passengers as the potentially most affected actors/stakeholders due to mitigating actions such as delaying, cancelling and rerouting particular affected flights. These actions aim at maintaining both the network’s resilience and safety at the acceptable level under given conditions.Large scale disruptive events, which can compromise the resilience and friability of a given air transport network, include bad weather, failures of particular (crucial) network components, the industrial actions of the air transport staff, natural disasters, terrorist threats/attacks and traffic incidents/accidents.The methodology is applied to the selected real-life case under given conditions. In addition, this methodology could be used for pre-selecting the location of airline hub airport(s), assessing the resilience of planned airline schedules and the prospective consequences, and designing mitigating measures before, during, and in the aftermath of a disruptive event. As such, it could, with slight modifications, be applied to transport networks operated by other transport modes. 相似文献
7.
Passenger demand for air transportation is expected to continue growing into the future. The increase in operations will undoubtedly lead to an escalation in harmful carbon dioxide emissions, an adverse effect that governing bodies have been striving to mitigate. The International Air Transport Association has set aggressive environmental targets for the global aviation industry. This paper investigates the achievability of those targets in the US using a top-down partial equilibrium model of the aviation system complemented with a previously developed fleet turnover procedure. Three ‘enablers’ are considered: aircraft technologies, operational improvements and sustainable biofuels. To account for sources of uncertainty, Monte Carlo simulations are conducted to run a multitude of scenarios. It was found that the likelihood of meeting all targets is extremely low (0.3%) for the expected demand growth rates in the US. Results show that biofuels have the most impact on system CO2 emissions, responsible for an average 64% of the total savings by 2050 (with aircraft technologies and operational improvements responsible for 31% and 5%, respectively). However, this impact is associated with high uncertainty and very dependent on both biofuel type and availability. 相似文献
8.
In this paper we describe the methods used to develop the open source Aviation Emissions Inventory Code and produce a global emissions inventory for scheduled civil aviation, with quantified uncertainty. We estimate that in 2005, scheduled civil aviation was responsible for 180.6 Tg of fuel burn, which agrees to within 4% of other published emissions inventories for 2004 and 2006. By comparing the Aviation Emissions Inventory Code with flight data records, we show that the mean bias in predicted fuel burn at the airport-pair level is +1% for an ensemble of 132 flights, and less than 10% for 5 of the 6 aircraft types used in the validation. 相似文献
9.
Global carbon dioxide emissions scenarios for aviation derived from IPCC storylines: A meta-analysis
Sveinn Vidar Gudmundsson Annela Anger 《Transportation Research Part D: Transport and Environment》2012,17(1):61-65
This research summarises the aviation CO2 emissions studies that use the Intergovernmental Panel on Climate Change IS92 and Special Report on Emissions Scenarios storylines as GDP growth assumptions to estimate future global carbon dioxide emissions from the aviation sector. The inter-quartile mean and the first and third quartiles are calculated to enable researches studying climate change policies for aviation to use an average global baseline scenario with lower and upper boundaries. We also perform a simple meta-analysis to analyse the assumptions used to derive the baseline scenario and conclude, as expected, that change in revenue-tonne-kilometres and fuel-efficiency are the main drivers behind the baseline scenarios. 相似文献
10.
Victoria Williams Robert B. Noland Ralf Toumi 《Transportation Research Part D: Transport and Environment》2002,7(6):451-464
Two of the ways in which air travel affects climate are the emission of carbon dioxide and the creation of high-altitude contrails. One possible impact reduction strategy is to significantly reduce the formation of contrails. This could be achieved by limiting the cruise altitude of aircraft. If implemented, this could severely constrain air space capacity, especially in parts of Europe. In addition, carbon emissions would likely be higher due to less efficient aircraft operation at lower cruise altitudes. This paper describes an analysis of these trade-offs using an air space simulation model as applied to European airspace. The model simulates the flight paths and altitudes of each aircraft and is here used to calculate emissions of carbon dioxide and changes in the journey time. For a one-day Western European traffic sample, calculations suggest annual mean CO2 emissions would increase by only 4% if cruise altitudes were restricted to prevent contrail formation. The change in journey time depended on aircraft type and route, but average changes were less than 1 min. Our analysis demonstrates that altitude restrictions on commercial aircraft could be an effective means of reducing climate change impacts, though it will be necessary to mitigate the increased controller workload conflicts that this will generate. 相似文献
11.
When jetliners fly in the stratosphere, their emissions tend to be longer-lived and therefore have greater environmental impact. Since the altitude of the tropopause is not consistent and can be as low as 23,000 ft., cruising flights may have a great chance to fly into the stratosphere. In this paper, we present a simple and rapid method to estimate the extent of US commercial passenger and cargo flight that currently occurs in the stratosphere, based on publicly available historical data from 2008 to 2012. We model the vertical profile of a flight and compare it with the height of the tropopause along its route. Our analysis covers 78% of the total travelled distance reported by the United States Bureau of Transportation Statistics, and shows that these flights burnt ∼11 million tons of fuel annually, or ∼31% of cruise fuel, in the stratosphere between 2008 and 2012. Our results also show that the chance of flying into stratosphere varies by area, but flights within the contiguous United States tend to stay below the stratosphere. Moreover, the stratosphere fuel burn of Asia-US flights may be significantly reduced by taking jet stream routes. 相似文献
12.
In October 2013, the International Civil Aviation Organization (ICAO) announced that it would put in place a market-based mechanism to cap net greenhouse gas emissions from international civil aviation at 2020 levels. This paper analyses the obligations that would be placed on real airlines under an initial draft “Strawman” proposal that was originally formulated as a starting point for discussions within ICAO, and the extent to which such a proposal would succeed in keeping emissions at or below the desired level. The provisions of the ICAO proposal were then applied to more than 100 existing airlines. In order to protect commercial sensitivities, we used hierarchical cluster analysis to identify groups of different types of airlines. We report the results for these groups rather than for individual airlines. While ambiguities in the Strawman proposal complicated the analysis, we found that, depending on their size and rate of growth, airlines will be required to offset very different proportions of their emissions from international flights. A system of de minimis exemptions, as currently proposed, would benefit some rich countries as well as poor ones. Targeting such exemptions more narrowly would raise practical difficulties, which we describe. We conclude by recommending that ICAO design and implement a much simpler system; and propose one alternative. 相似文献
13.
Improved Air Traffic Management (ATM) leading to reduced en route and gate delay, greater predictability in flight planning, and reduced terminal inefficiencies has a role to play in reducing aviation fuel consumption. Air navigation service providers are working to quantify this role to help prioritize and justify ATM modernization efforts. In the following study we analyze actual flight-level fuel consumption data reported by a major U.S. based airline to study the possible fuel savings from ATM improvements that allow flights to better adhere to their planned trajectories both en route and in the terminal area. To do so we isolate the contribution of airborne delay, departure delay, excess planned flight time, and terminal area inefficiencies on fuel consumption using econometric techniques. The model results indicate that, for two commonly operated aircraft types, the system-wide averages of flight fuel consumption attributed to ATM delay and terminal inefficiencies are 1.0–1.5% and 1.5–4.5%, respectively. We quantify the fuel impact of predicted delay to be 10–20% that of unanticipated delay, reinforcing the role of flight plan predictability in reducing fuel consumption. We rank terminal areas by quantifying a Terminal Inefficiency metric based on the variation in terminal area fuel consumed across flights. Our results help prioritize ATM modernization investments by quantifying the trade-offs in planned and unplanned delays and identifying terminal areas with high potential for improvement. 相似文献
14.
This paper examines wildlife strikes with civil helicopters within the US. Month and time of day, location, and other factors influenced the frequency of wildlife strikes with civil helicopters. Wildlife strikes occurred most frequently when the aircraft were traveling en route or engaged in terrain flight. Birds accounted for over 97% of the wildlife strikes where the animal was identified. 相似文献
15.
The US Federal Aviation Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation industry each year from 2018. We examine the economic and emissions impacts of this goal using renewable fuel produced from a Hydroprocessed Esters and Fatty Acids (HEFA) process from renewable oils. Our approach employs an economy-wide model of economic activity and energy systems and a detailed partial equilibrium model of the aviation industry. If soybean oil is used as a feedstock, we find that meeting the aviation biofuel goal in 2020 will require an implicit subsidy from airlines to biofuel producers of $2.69 per gallon of renewable jet fuel. If the aviation goal can be met by fuel from oilseed rotation crops grown on otherwise fallow land, the implicit subsidy is $0.35 per gallon of renewable jet fuel. As commercial aviation biofuel consumption represents less than 2% of total fuel used by this industry, the goal has a small impact on the average price of jet fuel and carbon dioxide emissions. We also find that, under the pathways we examine, the cost per tonne of CO2 abated due to aviation biofuels is between $50 and $400. 相似文献
16.
The many varied views on resilience indicate that it is an important concept which has significance in many disciplines, from ecology to psychology to risk/disaster management. Therefore, it is important to be able to quantifiably measure the resilience of systems, and thus be able to make decisions on how the resilience of the system can be improved. In this paper we will work with the definition, due to Pimm (1991), that resilience is “how fast a variable that has been displaced from equilibrium returns to it.” We will think of a system as being more or less resilient depending on the speed with which a system recovers from disruptive events or shocks. Here we consider systems which revert to an equilibrium state from shocks, and introduce a measure of resilience by providing a quantification of the rapidity of these systems’ recovery from shocks.We use a mean-reverting stochastic model to study the diffusive effects of shocks and we apply this model to the case of the London Underground. As a shock diffuses through the network, the human-flow in the network recovers from the shock. The speed with which the passenger counts return to normal is an indicator of how quickly the line is able to recover from the shock and thereafter resume normal operations. 相似文献
17.
自2017年十九大提出经济高质量发展以来,重庆根据中央部署,经济高质量发展取得了初步成功。在这一过程中,发现航空物流产业与区域经济高质量发展间存在正相关关系。为了研究重庆航空物流与区域经济高质量发展的协同性,采用数据包络分析(DEA)模型,对重庆市2008年至2018年GDP、航空货邮吞吐量等指标进行代入计算。结果表明,重庆航空物流与区域经济高质量发展存在较高的协同性,且呈现上升趋势,但由于航空物流和区域经济发展内部资源分配不合理,导致有效协同发展程度波动较大。结合重庆市实际情况,以资源配置优化为侧重点,提出提高二者协同性的建议。 相似文献
18.
Air traffic has an increasing influence on climate; therefore identifying mitigation options to reduce the climate impact of aviation becomes more and more important. Aviation influences climate through several climate agents, which show different dependencies on the magnitude and location of emission and the spatial and temporal impacts. Even counteracting effects can occur. Therefore, it is important to analyse all effects with high accuracy to identify mitigation potentials. However, the uncertainties in calculating the climate impact of aviation are partly large (up to a factor of about 2). In this study, we present a methodology, based on a Monte Carlo simulation of an updated non-linear climate-chemistry response model AirClim, to integrate above mentioned uncertainties in the climate assessment of mitigation options. Since mitigation options often represent small changes in emissions, we concentrate on a more generalised approach and use exemplarily different normalised global air traffic inventories to test the methodology. These inventories are identical in total emissions but differ in the spatial emission distribution. We show that using the Monte Carlo simulation and analysing relative differences between scenarios lead to a reliable assessment of mitigation potentials. In a use case we show that the presented methodology can be used to analyse even small differences between scenarios with mean flight altitude variations. 相似文献
19.
The purpose of this paper is to develop safety performance measures and test the measures on data for air traffic management failure events. Failure events are classified by the severity of the consequence of occurrence, resulting in the rate of occurrence in severity categories. The safety measures are standard statistics calculated from this “distribution” for comparison of airport operations by stochastic ordering. For comparisons a benchmark is developed from the aggregation of failure data on a set of comparable airports. Airport performance is then compared with the benchmark using the defined safety measures. The benchmark comparison was implemented with failure data for major airports in Canada from 2005 to 2012. The results show a number of patterns and anomalies and some airports perform poorly in comparison to a class of similar operations. We conclude by suggesting benchmarking safety measures as a natural addition to the information system on aviation safety compiled by a national regulatory body to unravel anomalies such as implementation problems of a safety management system. 相似文献
20.
The effect of wind changes on aircraft routing has been identified as a potential impact of climate change on aviation. This is of particular interest for trans-Atlantic flights, where the pattern of upper-level winds over the north Atlantic, in particular the location and strength of the jet stream, strongly influences both the optimal flight route and the resulting flight time. Eastbound trans-Atlantic flights can often be routed to take advantage of the strong tailwinds in the jet stream, shortening the flight time and reducing fuel consumption. Here we investigate the impact of climate change on upper-level winds over the north Atlantic, using five climate model simulations from the Fifth Coupled Model Intercomparison Project, considering a high greenhouse-gas emissions scenario. The impact on aircraft routing and flight time are quantified using flight routing software. The climate models agree that the jet stream will be on average located 1° further north, with a small increase in mean strength, by 2100. However daily variations in both its location and speed are significantly larger than the magnitude of any changes due to climate change. The net effect of climate change on trans-Atlantic aircraft routes is small; in the annual-mean eastbound routes are 1 min shorter and located further north and westbound routes are 1 min longer and more spread out around the great circle. There are, however, seasonal variations; route time changes are larger in winter, while in summer both eastbound and westbound route times increase. 相似文献