共查询到2条相似文献,搜索用时 0 毫秒
1.
The objective of the present study is the assessment of the environmental impact of a bivalent (bi-fuel) vehicle, running either on gasoline or compressed natural gas (CNG). To that aim, a Euro 6 passenger car was tested under various real-world driving conditions. In order to cover the full range of conventional powertrains currently in the market, the tests were also repeated on a Euro 6 diesel passenger car. Both cars were driven in two routes, the first complying with the regulation limits and the second going beyond them. Carbon monoxide (CO), nitrogen oxides (NOx) and particle number (PN) emissions were recorded using a Portable Emissions Measurement System (PEMS). Apart from the aggregated emission levels, in g/km, the exact emission location along the route was also assessed. Natural gas proved beneficial for CO and PN emissions, the level of which always remained below the respective legislation limits. On the other hand, under the dynamic driving conditions with gasoline, the relevant limits were exceeded. Cold start, occurring at the beginning of the urban part, and motorway driving were identified as major contributors to total emissions, especially in gasoline mode. However, the application of natural gas was associated with a penalty in NOx emissions, which were significantly increased as compared to gasoline. Local peaks within the urban part were identified in CNG mode. In any case, the diesel vehicle was by far the highest NOx emitter. 相似文献
2.
This paper examines the possible placement of Energy Storage Systems (ESS) on an urban tram system for the purpose of exploring potential increases in operating efficiency through the examination of different locations for battery energy storage. Further, the paper suggests the utilisation of Electric Vehicle (EV) batteries at existing Park and Ride (P&R) sites as a means of achieving additional energy storage at these locations. The study achieves this through MATLAB modelling utilising captured GPS data and publically available information. This study examines the scenario of uni-directional substations with no interconnection between the overhead catenary for both directions of travel, and discusses the trade-offs between ESS size and required current limits.The results show the savings in both energy and basic CO2 emissions alongside the discussion of Return on Investment (RoI) that can be achieved through the potential installation of ESS at identified ideal locations along the tram network. Moreover, this may be extended to the use of EVs as stationary ESS sited at the existing P&R facilities. Further, the model may also be used to inform future infrastructure upgrades and potential improvements to air quality within urban environments. 相似文献