共查询到20条相似文献,搜索用时 0 毫秒
1.
This study gains insight into individual motivations for choosing to own and use autonomous vehicles and develops a model for autonomous vehicle long-term choice decisions. A stated preference questionnaire is distributed to 721 individuals living across Israel and North America. Based on the characteristics of their current commutes, individuals are presented with various scenarios and asked to choose the car they would use for their commute. A vehicle choice model which includes three options is estimated:
- (1)Continue to commute using a regular car that you have in your possession.
- (2)Buy and shift to commuting using a privately-owned autonomous vehicle (PAV).
- (3)Shift to using a shared-autonomous vehicle (SAV), from a fleet of on-demand cars for your commute.
2.
This paper presents the results of a preference survey of 1545 respondents’ willingness to purchase electric vehicles (EVs) in Philadelphia. We pay particular attention to respondents’ willingness to pay for convenient charging systems and parking spaces. If the value of dedicated parking substantially outweighs the value of convenient charging systems, residential-based on-street charging systems are unlikely to ever be politically palatable. As expected, respondents are generally willing to pay for longer range, shorter charging times, lower operating costs, and shorter parking search times. For a typical respondent, a $100 per month parking charge decreases the odds of purchasing an EV by around 65%. Across mixed logit and latent class models, we find substantial variation in the willingness to pay for EV range, charge time, and ease of parking. Of note, we find two primary classes of respondents with substantially different EV preferences. The first class tends to live in multifamily housing units in central parts of the city and puts a high value on parking search time and the availability of on-street charging stations. The second class, whose members are likelier to be married, wealthy, conservative, and residing in single-family homes in more distant neighborhoods, are willing to pay more for EV range and charge time, but less for parking than the first group. They are also much likelier to consider purchasing EVs at all. We recommend that future research into EV adoption incorporate neighborhood-level features, like parking availability and average trip distances, which vary by neighborhood and almost certainly influence EV adoption. 相似文献
3.
Several recent studies in transportation have analysed how choices made by individuals are influenced by attitudes. Other studies have contributed to our understanding of apparently non-rational behaviour by examining how choices may reflect reference-dependent preferences. This paper examines how reference-dependent preferences and attitudes together may explain individual choices. In a modelling framework based on a hybrid choice model allowing for both concepts, we investigate how attitudes and reference-dependent preferences interact and how they affect willingness-to-pay measures and demand elasticities. Using a data set with stated choices among alternative-fuel vehicles, we see that allowing for reference-dependent preferences improves our ability to explain the stated choices in the data and that the attitude (appreciation of car features) explains part of the preference heterogeneity across individuals. The results indicate that individuals have reference-dependent preferences that could be explained by loss aversion and that these are indeed related to an individual’s attitude towards car features. The models are validated using a large hold-out sample. This shows that the inclusion of attitudes improves the models’ ability to explain behaviour in the hold-out sample. While neither reference-dependent preferences nor the attitude affect the average willingness-to-pay measures in our sample, their effect on choice behaviour has implications for policy recommendations as segments with varying attitudes and reference values will act differently when affected by policy instruments related to the demand for alternative-fuel vehicles, e.g. subsidies. 相似文献
4.
This paper examines the potential impact of autonomous vehicles on commuters’ value of travel time (VOTT). In particular, we focus on the effect on auto commuters in small and medium-sized metropolitan areas, concerning the spatial variability across urban areas, suburbs, and rural areas. We design a stated choice experiment to elicit potential changes in 1,881 auto commuters’ valuation of travel time in autonomous vehicles and apply a mixed logit model to quantify the changes in the value of travel time if taking autonomous vehicles. The results of this study suggest that the effect of autonomous vehicles on the VOTT is spatially differentiated. We find that riding in a private autonomous vehicle reduces the commuting VOTT of suburban, urban, and rural drivers by 32%, 24%, and 18%, respectively, compared to 14%, 13%, and 8% for riding in a shared autonomous vehicle. Finally, we discuss the implications of these lower values of time on transportation and land use planning. 相似文献
5.
A choice experiment on alternative fuel vehicle preferences of private car owners in the Netherlands
This paper presents results of an online stated choice experiment on preferences of Dutch private car owners for alternative fuel vehicles (AFVs) and their characteristics. Results show that negative preferences for alternative fuel vehicles are large, especially for the electric and fuel cell car, mostly as a result of their limited driving range and considerable refueling times. Preference for AFVs increases considerably with improvements on driving range, refueling time and fuel availability. Negative AFV preferences remain, however, also with substantial improvements in AFV characteristics; the remaining willingness to accept is on average € 10,000–€ 20,000 per AFV. Results from a mixed logit model show that consumer preferences for AFVs and AFV characteristics are heterogeneous to a large extent, in particular for the electric car, additional detour time and fuel time for the electric and fuel cell car. An interaction model reveals that annual mileage is by far the most important factor that determines heterogeneity in preferences for the electric and fuel cell car. When annual mileage increases, the preference for electric and fuel cell cars decreases substantially, whilst the willingness to pay for driving range increases substantially. Other variables such as using the car for holidays abroad and the daily commute also appear to be relevant for car choice. 相似文献
6.
Autonomous vehicles use sensing and communication technologies to navigate safely and efficiently with little or no input from the driver. These driverless technologies will create an unprecedented revolution in how people move, and policymakers will need appropriate tools to plan for and analyze the large impacts of novel navigation systems. In this paper we derive semiparametric estimates of the willingness to pay for automation. We use data from a nationwide online panel of 1260 individuals who answered a vehicle-purchase discrete choice experiment focused on energy efficiency and autonomous features. Several models were estimated with the choice microdata, including a conditional logit with deterministic consumer heterogeneity, a parametric random parameter logit, and a semiparametric random parameter logit. We draw three key results from our analysis. First, we find that the average household is willing to pay a significant amount for automation: about $3500 for partial automation and $4900 for full automation. Second, we estimate substantial heterogeneity in preferences for automation, where a significant share of the sample is willing to pay above $10,000 for full automation technology while many are not willing to pay any positive amount for the technology. Third, our semiparametric random parameter logit estimates suggest that the demand for automation is split approximately evenly between high, modest and no demand, highlighting the importance of modeling flexible preferences for emerging vehicle technology. 相似文献
7.
This paper analyzes the potential demand for privately used alternative fuel vehicles using German stated preference discrete choice data. By applying a mixed logit model, we find that the most sensitive group for the adoption of alternative fuel vehicles embraces younger, well-educated, and environmentally aware car buyers, who have the possibility to plug-in their car at home, and undertake numerous urban trips. Moreover, many households are willing to pay considerable amounts for greater fuel economy and emission reduction, improved driving range and charging infrastructure, as well as for enjoying vehicle tax exemptions and free parking or bus lane access. The scenario results suggest that conventional vehicles will maintain their dominance in the market. Finally, an increase in the battery electric vehicles’ range to a level comparable with all other vehicles has the same impact as a multiple measures policy intervention package. 相似文献
8.
Autonomous vehicles (AVs) represent potentially disruptive and innovative changes to public transportation (PT) systems. However, the exact interplay between AV and PT is understudied in existing research. This paper proposes a systematic approach to the design, simulation, and evaluation of integrated autonomous vehicle and public transportation (AV + PT) systems. Two features distinguish this research from the state of the art in the literature: the first is the transit-oriented AV operation with the purpose of supporting existing PT modes; the second is the explicit modeling of the interaction between demand and supply.We highlight the transit-orientation by identifying the synergistic opportunities between AV and PT, which makes AVs more acceptable to all the stakeholders and respects the social-purpose considerations such as maintaining service availability and ensuring equity. Specifically, AV is designed to serve first-mile connections to rail stations and provide efficient shared mobility in low-density suburban areas. The interaction between demand and supply is modeled using a set of system dynamics equations and solved as a fixed-point problem through an iterative simulation procedure. We develop an agent-based simulation platform of service and a discrete choice model of demand as two subproblems. Using a feedback loop between supply and demand, we capture the interaction between the decisions of the service operator and those of the travelers and model the choices of both parties. Considering uncertainties in demand prediction and stochasticity in simulation, we also evaluate the robustness of our fixed-point solution and demonstrate the convergence of the proposed method empirically.We test our approach in a major European city, simulating scenarios with various fleet sizes, vehicle capacities, fare schemes, and hailing strategies such as in-advance requests. Scenarios are evaluated from the perspectives of passengers, AV operators, PT operators, and urban mobility system. Results show the trade off between the level of service and the operational cost, providing insight for fleet sizing to reach the optimal balance. Our simulated experiments show that encouraging ride-sharing, allowing in-advance requests, and combining fare with transit help enable service integration and encourage sustainable travel. Both the transit-oriented AV operation and the demand-supply interaction are essential components for defining and assessing the roles of the AV technology in our future transportation systems, especially those with ample and robust transit networks. 相似文献
9.
While discrete choice analysis is prevalent in capturing consumer preferences and describing their choice behaviors in product design, the traditional choice modeling approach assumes that each individual makes independent decisions, without considering the social impact. However, empirical studies show that choice is social – influenced by many factors beyond engineering performance of a product and consumer attributes. To alleviate this limitation, we propose a new choice modeling framework to capture the dynamic influence from social networks on consumer adoption of new products. By introducing social influence attributes into a choice utility function, social network simulation is integrated with the traditional discrete choice analysis in a three-stage process. Our study shows the need for considering social impact in forecasting new product adoption. Using hybrid electric vehicles as an example, our work illustrates the procedure of social network construction, social influence evaluation, and choice model estimation based on data from the National Household Travel Survey. Our study also demonstrates several interesting findings on the dynamic nature of new technology adoption and how social networks may influence hybrid electric vehicle adoption. 相似文献
10.
The introduction of connected and autonomous vehicles will bring changes to the highway driving environment. Connected vehicle technology provides real-time information about the surrounding traffic condition and the traffic management center’s decisions. Such information is expected to improve drivers’ efficiency, response, and comfort while enhancing safety and mobility. Connected vehicle technology can also further increase efficiency and reliability of autonomous vehicles, though these vehicles could be operated solely with their on-board sensors, without communication. While several studies have examined the possible effects of connected and autonomous vehicles on the driving environment, most of the modeling approaches in the literature do not distinguish between connectivity and automation, leaving many questions unanswered regarding the implications of different contemplated deployment scenarios. There is need for a comprehensive acceleration framework that distinguishes between these two technologies while modeling the new connected environment. This study presents a framework that utilizes different models with technology-appropriate assumptions to simulate different vehicle types with distinct communication capabilities. The stability analysis of the resulting traffic stream behavior using this framework is presented for different market penetration rates of connected and autonomous vehicles. The analysis reveals that connected and autonomous vehicles can improve string stability. Moreover, automation is found to be more effective in preventing shockwave formation and propagation under the model’s assumptions. In addition to stability, the effects of these technologies on throughput are explored, suggesting substantial potential throughput increases under certain penetration scenarios. 相似文献
11.
In this paper we analyze demand for cycling using a discrete choice model with latent variables and a discrete heterogeneity distribution for the taste parameters. More specifically, we use a hybrid choice model where latent variables not only enter into utility but also inform assignment to latent classes. Using a discrete choice experiment we analyze the effects of weather (temperature, rain, and snow), cycling time, slope, cycling facilities (bike lanes), and traffic on cycling decisions by members of Cornell University (in an area with cold and snowy winters and hilly topography). We show that cyclists can be separated into two segments based on a latent factor that summarizes cycling skills and experience. Specifically, cyclists with more skills and experience are less affected by adverse weather conditions. By deriving the median of the ratio of the marginal rate of substitution for the two classes, we show that rain deters cyclists with lower skills from bicycling 2.5 times more strongly than those with better cycling skills. The median effects also show that snow is almost 4 times more deterrent to the class of less experienced cyclists. We also model the effect of external restrictions (accidents, crime, mechanical problems) and physical condition as latent factors affecting cycling choices. 相似文献
13.
With 36 ventures testing autonomous vehicles (AVs) in the State of California, commercial deployment of this disruptive technology is almost around the corner (California Department of Transportation, 2016). Different business models of AVs, including Shared AVs (SAVs) and Private AVs (PAVs), will lead to significantly different changes in regional vehicle inventory and Vehicle Miles Travelled (VMT). Most prior studies have already explored the impact of SAVs on vehicle ownership and VMT generation. Limited understanding has been gained regarding vehicle ownership reduction and unoccupied VMT generation potentials in the era of PAVs. Motivated by such research gap, this study develops models to examine how much vehicle ownership reduction can be achieved once private conventional vehicles are replaced by AVs and the spatial distribution of unoccupied VMT accompanied with the vehicle reduction. The models are implemented using travel survey and synthesized trip profile from Atlanta Metropolitan Area. The results show that more than 18% of the households can reduce vehicles, while maintaining the current travel patterns. This can be translated into a 9.5% reduction in private vehicles in the study region. Meanwhile, 29.8 unoccupied VMT will be induced per day per reduced vehicles. A majority of the unoccupied VMT will be loaded on interstate highways and expressways and the largest percentage inflation in VMT will occur on minor local roads. The results can provide implications for evolving trends in household vehicles uses and the location of dedicated AV lanes in the PAV dominated future. 相似文献
14.
This work addresses the formation phase of automatic platooning. The objective is to optimally control the throttle of vehicles, with a given arbitrary initial condition, such that desired ground speed and inter-vehicular spacings are reached. The steering of the vehicles is also controlled, because the vehicles should track a desired path while forming the platoon. In order to address the platoon formation problem, a cooperative strategy is formed by constructing a discrete state space model which represents the dynamics of a set of n vehicles. Once this model is set, a control method known as Interpolating Control, which aims at regulating to the origin an uncertain and/or time-varying linear discrete-time system with state and control constraints, is utilized. The performance of this control method is evaluated and compared with other approaches such as Model Predictive Control (MPC).Simulations are conducted which suggest that the Interpolating Control approach can be seen as an alternative to optimization-based control schemes such as Model Predictive Control, especially for problems for which finding the optimal solution requires calculations, where the Interpolating Control approach can provide a straightforward sub-optimal solution.In the experimental part of this work, the control algorithms for the platoon formation and path tracking problems are combined, and tested in a laboratory environment, using three mobile robots equipped with wireless routers. Validation of the proposed models and control algorithms is achieved by successful experiments. 相似文献
15.
In this paper we use advanced choice modelling techniques to analyse demand for freight transport in a context of modal choice. To this end, a stated preference (SP) survey was conducted in order to estimate freight shipper preferences for the main attributes that define the service offered by the different transport modes. From a methodological point of view, we focus on two critical issues in the construction of efficient choice experiments. Firstly, in obtaining good quality prior information about the parameters; and secondly, in the improved quality of the experimental data by tailoring a specific efficient design for every respondent in the sample.With these data, different mixed logit models incorporating panel correlation effects and accounting for systematic and random taste heterogeneity are estimated. For the best model specification we obtain the willingness to pay for improving the level of service and the elasticity of the choice probabilities for the different attributes. Our model provide interesting results that can be used to analyse the potential diversion of traffic from road (the current option) to alternative modes, rail or maritime, as well as to help in the obtaining of the modal distribution of commercial traffic between Spain and the European Union, currently passing through the Pyrenees. 相似文献
16.
Traffic waves are phenomena that emerge when the vehicular density exceeds a critical threshold. Considering the presence of increasingly automated vehicles in the traffic stream, a number of research activities have focused on the influence of automated vehicles on the bulk traffic flow. In the present article, we demonstrate experimentally that intelligent control of an autonomous vehicle is able to dampen stop-and-go waves that can arise even in the absence of geometric or lane changing triggers. Precisely, our experiments on a circular track with more than 20 vehicles show that traffic waves emerge consistently, and that they can be dampened by controlling the velocity of a single vehicle in the flow. We compare metrics for velocity, braking events, and fuel economy across experiments. These experimental findings suggest a paradigm shift in traffic management: flow control will be possible via a few mobile actuators (less than 5%) long before a majority of vehicles have autonomous capabilities. 相似文献
17.
18.
In this paper, we examine the operation of electric vehicles in urban car sharing networks. After surveying strategic and operational differences and comparing them to gasoline-fueled cars, a simulation study was carried out. The proposed discrete event simulation tool covered important operational characteristics of electric vehicles, including realistic charging routines. Different vehicle types were compared under various conditions and on multiple markets to determine their performance. The data obtained indicated the competitiveness of electric vehicles in car sharing networks. Key success factors included advantageous relations between the market environment (e.g. electricity and fuel prices) and important characteristics of electric cars (e.g. price and range). 相似文献
19.
We examine the problem of estimating parameters for Generalized Extreme Value (GEV) models when one or more alternatives are censored in the sample data, i.e., all decision makers who choose these censored alternatives are excluded from the sample; however, information about the censored alternatives is still available. This problem is common in marketing and revenue management applications, and is essentially an extreme form of choice-based sampling. We review estimators typically used with GEV models, describe why many of these estimators cannot be used for these censored samples, and present two approaches that can be used to estimate parameters associated with censored alternatives. We detail necessary conditions for the identification of parameters associated exclusively with the utility of censored alternatives. These conditions are derived for single-level nested logit, multi-level nested logit and cross-nested logit models. One of the more surprising results shows that alternative specific constants for multiple censored alternatives that belong to the same nest can still be separately identified in nested logit models. Empirical examples based on simulated datasets demonstrate the large-sample consistency of estimators and provide insights into data requirements needed to estimate these models for finite samples. 相似文献
20.
Despite the recent commercial success of hybrid, plug-in hybrid and electric vehicles their market share is still insufficient to produce either a significant impact on energy consumption on a global basis or a profitable automotive segment. In this context, the possibility of upgrading conventional vehicles to hybrid electric vehicles is gaining increasing interest.To this aim this paper investigated and modelled the intention to install an after-market hybridization solar-kit (HySolarKit) in order to ascertain the main behavioural determinants of the choice process and set up an operational model with which to estimate the market potential of such technology. In particular, two behavioural stages of the choice process were analysed and modelled: (i) the intention to adopt the HySolarKit; (ii) the choice to install the HySolarKit. Both issues were addressed through ad hoc stated preference surveys carried out in two different Italian cities, and through the specification and the calibration of discrete choice models based on the behavioural paradigm of random utility theory. Different modelling solutions (homoscedastic and heteroscedastic) were compared in terms of goodness-of-fit and sensitivity to level-of-service attributes. The results showed the technological potential of the HySolarKit, and that both behavioural stages may be effectively modelled through random utility theory. Estimation results allowed an interpretation of the main determinants of the investigated phenomena, making it possible to quantify the potential effects and the concerns towards such a green solution, and making it possible to draw up operative marketing strategies. In particular, the intention to adopt the kit mainly depends on socio-economic factors as well as activity-related and attitudinal attributes, whereas the probability of installing the kit is greatly affected, to the same extent, by installation cost, the charging cost and the weekly mileage driven. 相似文献