首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper evaluates the effectiveness of feedback, based on In-Vehicle Data Recorders (IVDR), to improve driving behavior, increase driving safety, and reduce fuel consumption. We developed a framework for driving-behavior measurement, incorporating second-by-second data collected by IVDRs. IVDR units were installed in over 150 vehicles driven by more than 350 drivers for over a year. The experiment was divided into three stages. The first stage was a “blind”, control stage, with no feedback. The second stage incorporated verbal feedback given only to riskiest drivers. In the third stage all drivers received a bi-weekly written report about their driving performance. Safety events, such as braking, lateral acceleration or speeding, were recorded. Supplementary data regarding safety related events and fuel consumption were also collected. Safety incidents and fuel consumption were modeled as a function of IVDR measurement-based events, in order to identify which events best reflect safety incidents and excessive fuel consumption. Our results show that braking events best explain safety incidents, and all events together best explain fuel consumption. In addition, we found that for the riskiest drivers, feedback significantly reduced the IVDR events. Our models show that feedback can lead to a reduction of 8% in safety incidents, and 3–10% in fuel consumption, with a larger reduction obtained for large vehicles.  相似文献   

2.
In this paper the long-term impact of an eco-driving training course is evaluated by monitoring driving behavior and fuel consumption for several months before and after the course. Cars were equipped with an on-board logging device that records the position and speed of the vehicle using GPS tracking as well as real time as electronic engine data extracted from the controller area network. The data includes mileage, number of revolutions per minute, position of the accelerator pedal, and instantaneous fuel consumption. It was gathered over a period of 10 months for 10 drivers during real-life conditions thus enabling an individual drive style analysis. The average fuel consumption four months after the course fell by 5.8%. Most drivers showed an immediate improvement in fuel consumption that was stable over time, but some tended to fall back into their original driving habits.  相似文献   

3.
The variance in fuel consumption caused by driving style (DS) difference exceeds 10% and reaches a maximum of 20% under different road conditions, even for experienced bus drivers. To study the influence of DS on fuel consumption, a method for summarizing DS characteristic parameters on the basis of vehicle-engine combined model is proposed. With this method, the author proposes 26 DS characteristic parameters related to fuel consumption in the accelerating, normal running, and decelerating processes of vehicles. The influence of DS characteristic parameters on fuel consumption under different road conditions and vehicle masses is quantitatively analyzed on the basis of real driving data over 100,000 km. Analysis results show that the influence of DS characteristic parameters on fuel consumption changes with road condition and vehicle mass, with road condition serving a more important function. However, the DS characteristics in the accelerating process of vehicles are decisive for fuel consumption under different conditions. This study also calculates the minimum sample size necessary for analyzing the effect of DS characteristics on fuel consumption. The statistical analysis based on the real driving data over 2500 km can determine the influence of DS on fuel consumption under a given power-train configuration and road condition. The analysis results can be employed to evaluate the fuel consumption of drivers, as well as to guide the design of Driver Advisory System for Eco-driving directly.  相似文献   

4.
Driving behavior is generally considered to be one of the most important factors in crash occurrence. This paper aims to evaluate the benefits of utilizing context-relevant information in the driving behavior assessment process (i.e. contextual driving behavior assessment approach). We use a Bayesian Network (BN) model that investigates the relationships between GPS driving observations, individual driving behavior, individual driving risks, and individual crash frequency. In contrast to prior studies without context information (i.e. non-contextual approach), the data used in the BN approach is a combination of contextual features in the surrounding environment that may contribute to crash risk, such as road conditions surrounding the vehicle of interest and dynamic traffic flow information, as well as the non-contextual data such as instantaneous driving speed and the acceleration/deceleration of a vehicle. An information-aggregation mechanism is developed to aggregates massive amounts of vehicle GPS data points, kinematic events and context information into drivel-level data. With the proposed model, driving behavior risks for drivers is assessed and the relationship between contextual driving behavior and crash occurrence is established. The analysis results in the case study section show that the contextual model has significantly better performance than the non-contextual model, and that drivers who drive at a speed faster than others or much slower than the speed limit at the ramp, and with more rapid acceleration or deceleration on freeways are more likely to be involved in crash events. In addition, younger drivers, and female drivers with higher VMT are found to have higher crash risk.  相似文献   

5.
This research developed an eco-driving feedback system based on a driving simulator to support eco-driving training. This support system could provide both dynamic and static feedback to improve drivers’ eco-driving behavior. In the process of driving, drivers could get voice prompts (e.g., please avoid accelerating rapidly) once non-eco-driving behavior appeared, and also could see the real-time CO2 emissions curves. After driving, drivers could receive an eco-driving evaluation report including their fuel consumption rank, potential of fuel saving and driving advice corresponding to their driving behavior. In this support system, five items of non-eco-driving behavior (i.e., quick accelerate, rapid decelerate, engine revolutions at a high level, too fast or unstable speed on freeways and idling for a longer time) were defined and could be detected. To validate this support system’s effectiveness in reducing fuel consumption and emissions, 22 participants were recruited and three driving tests were conducted, first without using the support system, then static feedback and then dynamic feedback utilized respectively. A reduction of 5.37% for CO2 emissions and 5.45% for fuel consumption was obtained. The results indicated that the developed eco-driving support system was an effective training tool to improve drivers’ eco-driving behavior in reducing emissions and fuel consumption.  相似文献   

6.
This paper proposes a rule-based neural network model to simulate driver behavior in terms of longitudinal and lateral actions in two driving situations, namely car-following situation and safety critical events. A fuzzy rule based neural network is constructed to obtain driver individual driving rules from their vehicle trajectory data. A machine learning method reinforcement learning is used to train the neural network such that the neural network can mimic driving behavior of individual drivers. Vehicle actions by neural network are compared to actions from naturalistic data. Furthermore, this paper applies the proposed method to analyze the heterogeneities of driving behavior from different drivers’ data.Driving data in the two driving situations are extracted from Naturalistic Truck Driving Study and Naturalistic Car Driving Study databases provided by the Virginia Tech Transportation Institute according to pre-defined criteria. Driving actions were recorded in instrumented vehicles that have been equipped with specialized sensing, processing, and recording equipment.  相似文献   

7.
An effective way to reduce fuel consumption in the short run is to induce a change in driver behaviour. If drivers are prepared to change their driving habits they can complete the same journeys within similar travel times, but using significantly less fuel. In this paper, a prototype fuel-efficiency support tool is presented which helps drivers make the necessary behavioural adjustments.The support tool includes a normative model that back-calculates the minimal fuel consumption for manoeuvres carried out. If actual fuel consumption deviates from this optimum, the support tool presents advice to the driver on how to change his or her behaviour. To take account of the temporal nature of the driving task, advice is generated at two levels: tactical and strategic.Evaluation of the new support tool by means of a driving simulator experiment revealed that drivers were able to reduce overall fuel consumption by 16% compared with ‘normal driving’. The same drivers were only able to achieve a reduction of 9% when asked to drive fuel efficiently without support; thus, the tool gave an additional reduction of 7%. Within a simulated urban environment, the additional reduction yielded by the support tool rose to 14%. The new support tool was also evaluated with regard to secondary effects.  相似文献   

8.
We examine the strategies of modifying drive behavior adopted by two bus companies operating in the Lisbon Metropolitan Area to minimize fuel consumption and associated CO2 emissions. Rodoviária de Lisboa uses a commercial tool for monitoring buses during regular work, with data collected based on events representing undesired behavior that was subsequently used as the basis for classroom training of drivers. Barraqueiro Transportes adopted a vehicle monitoring system capable of processing information during operation giving real time driver feedback on energy, comfort and safety indicators. Both systems produced fuel economies, although to differing degrees.  相似文献   

9.
Traffic signals, even though crucial for safe operations of busy intersections, are one of the leading causes of travel delays in urban settings, as well as the reason why billions of gallons of fuel are burned, and tons of toxic pollutants released to the atmosphere each year by idling engines. Recent advances in cellular networks and dedicated short-range communications make Vehicle-to-Infrastructure (V2I) communications a reality, as individual cars and traffic signals can now be equipped with communication and computing devices. In this paper, we first presented an integrated simulator with V2I, a car-following model and an emission model to simulate the behavior of vehicles at signalized intersections and calculate travel delays in queues, vehicle emissions, and fuel consumption. We then present a hierarchical green driving strategy based on feedback control to smooth stop-and-go traffic in signalized networks, where signals can disseminate traffic signal information and loop detector data to connected vehicles through V2I communications. In this strategy, the control variable is an individual advisory speed limit for each equipped vehicle, which is calculated from its location, signal settings, and traffic conditions. Finally, we quantify the mobility and environment improvements of the green driving strategy with respect to market penetration rates of equipped vehicles, traffic conditions, communication characteristics, location accuracy, and the car-following model itself, both in isolated and non-isolated intersections. In particular, we demonstrate savings of around 15% in travel delays and around 8% in fuel consumption and greenhouse gas emissions. Different from many existing ecodriving strategies in signalized road networks, where vehicles’ speed profiles are totally controlled, our strategy is hierarchical, since only the speed limit is provided, and vehicles still have to follow their leaders. Such a strategy is crucial for maintaining safety with mixed vehicles.  相似文献   

10.
Wider deployment of alternative fuel vehicles (AFVs) can help with increasing energy security and transitioning to clean vehicles. Ideally, adopters of AFVs are able to maintain the same level of mobility as users of conventional vehicles while reducing energy use and emissions. Greater knowledge of AFV benefits can support consumers’ vehicle purchase and use choices. The Environmental Protection Agency’s fuel economy ratings are a key source of potential benefits of using AFVs. However, the ratings are based on pre-designed and fixed driving cycles applied in laboratory conditions, neglecting the attributes of drivers and vehicle types. While the EPA ratings using pre-designed and fixed driving cycles may be unbiased they are not necessarily precise, owning to large variations in real-life driving. Thus, to better predict fuel economy for individual consumers targeting specific types of vehicles, it is important to find driving cycles that can better represent consumers’ real-world driving practices instead of using pre-designed standard driving cycles. This paper presents a methodology for customizing driving cycles to provide convincing fuel economy predictions that are based on drivers’ characteristics and contemporary real-world driving, along with validation efforts. The methodology takes into account current micro-driving practices in terms of maintaining speed, acceleration, braking, idling, etc., on trips. Specifically, using a large-scale driving data collected by in-vehicle Global Positioning System as part of a travel survey, a micro-trips (building block) library for California drivers is created using 54 million seconds of vehicle trajectories on more than 60,000 trips, made by 3000 drivers. To generate customized driving cycles, a new tool, known as Case Based System for Driving Cycle Design, is developed. These customized cycles can predict fuel economy more precisely for conventional vehicles vis-à-vis AFVs. This is based on a consumer’s similarity in terms of their own and geographical characteristics, with a sample of micro-trips from the case library. The AFV driving cycles, created from real-world driving data, show significant differences from conventional driving cycles currently in use. This further highlights the need to enhance current fuel economy estimations by using customized driving cycles, helping consumers make more informed vehicle purchase and use decisions.  相似文献   

11.
At urban intersections, conflicts between right-turn vehicles and through non-motorized vehicles are a critical cause of traffic congestion and safety challenges. Based on the fact that in different countries there is no strict priority in conflicts between motorized and non-motorized vehicles, this study focused on analysis of the inherent mechanism of this universal phenomenon. By the analogy of a force model for moving vehicles, this paper developed a micro driving force model, including the safety driving force and efficiency driving force, for right-turn drivers which constitute the dominant party during the non-strict priority crossing process. We further demonstrate that the strict priority crossing behavior is a special case of the proposed driving force model. All the parameters used in this model were calibrated through field data collected at twelve signalized intersection sites in Shanghai. Model validation results proved the accuracy and reliability of the proposed driving force model. The model was further proved that it can be used for right-turn vehicle's average crossing speed prediction. The sensitivity analysis identified the influence of vehicle type, non-motorized traffic flow rate, and non-motorized traffic speed on the average speed, and offered support for the rationality of the non-strict priority.  相似文献   

12.
Providing guidance and information to drivers to help them make fuel-efficient route choices remains an important and effective strategy in the near term to reduce fuel consumption from the transportation sector. One key component in implementing this strategy is a fuel-consumption estimation model. In this paper, we developed a mesoscopic fuel consumption estimation model that can be implemented into an eco-routing system. Our proposed model presents a framework that utilizes large-scale, real-world driving data, clusters road links by free-flow speed and fits one statistical model for each of cluster. This model includes predicting variables that were rarely or never considered before, such as free-flow speed and number of lanes. We applied the model to a real-world driving data set based on a global positioning system travel survey in the Philadelphia-Camden-Trenton metropolitan area. Results from the statistical analyses indicate that the independent variables we chose influence the fuel consumption rates of vehicles. But the magnitude and direction of the influences are dependent on the type of road links, specifically free-flow speeds of links. A statistical diagnostic is conducted to ensure the validity of the models and results. Although the real-world driving data we used to develop statistical relationships are specific to one region, the framework we developed can be easily adjusted and used to explore the fuel consumption relationship in other regions.  相似文献   

13.
Part 1 describes a fuel consumption model based upon the instantaneous power demand experienced by a vehicle, which has been developed from chassis dynamometer experiments on 177 in-use Australian vehicles. When applied to an individual vehicle, the model provides aggregate fuel consumption estimates for on-road driving which are within 2% of the actual measured fuel usage. Emission rate models for hydrocarbons and nitrogen oxides which are of the same form as the fuel consumption model are also presented. The vehicle model can be applied in any traffic situation provided on-road power demand is known. On-road instantaneous power demand is derived from the vehicle's mass, drag, velocity acceleration and road gradient. In the first part 1929 km and 2778 links of traffic driving pattern data for both urban and non-urban trips are presented. Correlations between the link power and traffic parameters are presented and it is shown that vehicle link fuel consumption and emissions can be accurately calculated from vehicle mass, engine capacity, link average velocity, link average positive inertial power, link altitude change and link trip time. In the non-urban case, link power, and hence fuel consumption and emissions, are not dependent upon positive inertial power. In Part 2 the instantaneous vehicle power demand model is used to develop fuel usage input information to evaluate a simple average velocity model and an elemental model. The performance of these two models is compared with that of the on-road power method by “driving” all three models over 2281 links and 956 km of recorded on-road velocity, acceleration and gradient data. It is shown that all three models can be made to perform well for long trips. The elemental model, however, suffers from an inability to adequately describe the fuel usage of different stop-start manoeuvres and requires some calibration in order to account for cruise speed fluctuations. For short trips, 3.5 km in length or less, the on-road power demand method is superior. Under these conditions, both the simple and elemental models are unable to adequately describe the fuel usage relating to inertial power demands. It is shown that for short trips, inertial power demand does not correlate with average velocity and may range from near zero to up to twice the total trip averaged power.  相似文献   

14.
Bus fuel economy is deeply influenced by the driving cycles, which vary for different route conditions. Buses optimized for a standard driving cycle are not necessarily suitable for actual driving conditions, and, therefore, it is critical to predict the driving cycles based on the route conditions. To conveniently predict representative driving cycles of special bus routes, this paper proposed a prediction model based on bus route features, which supports bus optimization. The relations between 27 inter-station characteristics and bus fuel economy were analyzed. According to the analysis, five inter-station route characteristics were abstracted to represent the bus route features, and four inter-station driving characteristics were abstracted to represent the driving cycle features between bus stations. Inter-station driving characteristic equations were established based on the multiple linear regression, reflecting the linear relationships between the five inter-station route characteristics and the four inter-station driving characteristics. Using kinematic segment classification, a basic driving cycle database was established, including 4704 different transmission matrices. Based on the inter-station driving characteristic equations and the basic driving cycle database, the driving cycle prediction model was developed, generating drive cycles by the iterative Markov chain for the assigned bus lines. The model was finally validated by more than 2 years of acquired data. The experimental results show that the predicted driving cycle is consistent with the historical average velocity profile, and the prediction similarity is 78.69%. The proposed model can be an effective way for the driving cycle prediction of bus routes.  相似文献   

15.
Today, driver support tools intended to increase traffic safety, provide the driver with convenient information and guidance, or save time are becoming more common. However, few systems have the primary aim of reducing the environmental effects of driving. The aim of this project was to estimate the potential for reducing fuel consumption and thus the emission of CO2 through a navigation system where optimization of route choice is based on the lowest total fuel consumption (instead of the traditional shortest time or distance), further the supplementary effect if such navigation support could take into account real-time information about traffic disturbance events from probe vehicles running in the street network. The analysis was based on a large database of real traffic driving patterns connected to the street network in the city of Lund, Sweden. Based on 15 437 cases, the fuel consumption factor for 22 street classes, at peak and off-peak hours, was estimated for three types of cars using two mechanistic emission models. Each segment in the street network was, on a digitized map, attributed an average fuel consumption for peak and off-peak hours based on its street class and traffic flow conditions. To evaluate the potential of a fuel-saving navigation system the routes of 109 real journeys longer than 5 min were extracted from the database. Using Esri’s external program ArcGIS, Arcview and the external module Network Analysis, the most fuel-economic route was extracted and compared with the original route, as well as routes extracted from criterions concerning shortest time and shortest distance. The potential for further benefit when the system employed real-time data concerning the traffic situation through 120 virtual probe vehicles running in the street network was also examined. It was found that for 46% of trips in Lund the drivers spontaneous choice of route was not the most fuel-efficient. These trips could save, on average, 8.2% fuel by using a fuel-optimized navigation system. This corresponds to a 4% fuel reduction for all journeys in Lund. Concerning the potential for real-time information from probe vehicles, it was found that the frequency of disturbed segments in Lund was very low, and thus so was the potential fuel-saving. However, a methodology is presented that structures the steps required in analyzing such a system. It is concluded that real-time traffic information has the potential for fuel-saving in more congested areas if a sufficiently large proportion of the disturbance events can be identified and reported in real-time.  相似文献   

16.

European Union regulations require haulage companies of member states like the UK to keep records of their drivers’ hours of work. All heavy goods vehicles (HGV's) over 7.5 tonnes are fitted with tachographs which record a driver's operating activities (periods of driving, other work and rest). These records are etched onto a laminated chart by various styli, one of which records the vehicle's speed. This paper describes the development and testing of a new technique for extracting individual driving characteristics from the speed trace of an HGV tachograph chart to calculate four parameters: distance travelled, average speed, time travelled and speed variability.

The average speed, time travelled and speed variability were analysed statistically using one‐way analysis of variance tests. Speed variability was found to be particularly useful for identifying differences between individual driver's behaviour. Once differences in behaviours can be identified it may be possible to link certain driving habits to factors such as component wear, accident rates and excessive fuel usage.  相似文献   

17.
The main goal of in-vehicle technologies and co-operative services is to reduce congestion and increase traffic safety. This is achieved by alerting drivers on risky traffic conditions ahead of them and by exchanging traffic and safety related information for the particular road segment with nearby vehicles. Road capacity, level of service, safety, and air pollution are impacted to a large extent by car-following behavior of drivers. Car-following behavior is an essential component of micro-simulation models. This paper investigates the impact of an infrastructure-to-vehicle (I2V) co-operative system on drivers’ car-following behavior. Test drivers in this experiment drove an instrumented vehicle with and without the system. Collected trajectory data of the subject vehicle and the vehicle in front, as well as socio-demographic characteristics of the test drivers were used to estimate car-following models capturing their driving behavior with and without the I2V system. The results show that the co-operative system harmonized the behavior of drivers and reduced the range of acceleration and deceleration differences among them. The observed impact of the system was largest on the older group of drivers.  相似文献   

18.
Simulating driving behavior in high accuracy allows short-term prediction of traffic parameters, such as speeds and travel times, which are basic components of Advanced Traveler Information Systems (ATIS). Models with static parameters are often unable to respond to varying traffic conditions and simulate effectively the corresponding driving behavior. It has therefore been widely accepted that the model parameters vary in multiple dimensions, including across individual drivers, but also spatially across the network and temporally. While typically on-line, predictive models are macroscopic or mesoscopic, due to computational and data considerations, nowadays microscopic models are becoming increasingly practical for dynamic applications. In this research, we develop a methodology for online calibration of microscopic traffic simulation models for dynamic multi-step prediction of traffic measures, and apply it to car-following models, one of the key models in microscopic traffic simulation models. The methodology is illustrated using real trajectory data available from an experiment conducted in Naples, using a well-established car-following model. The performance of the application with the dynamic model parameters consistently outperforms the corresponding static calibrated model in all cases, and leads to less than 10% error in speed prediction even for ten steps into the future, in all considered data-sets.  相似文献   

19.
The effects of fuel price increases on people’s car use have been widely discussed during the last few decades in travel behavior research. It is well recognized that fuel price has significant effects on driving distance and driving efficiency. However, most of this research assumed that these effects are invariant across individuals and weather conditions. Moreover, intrinsic variability in people’s preferences has not been given much attention due to the difficulty of collecting the necessary data. In this paper, we collected detailed travel behavior data of 276 respondents in the Netherlands, spanning a time period between one week and three months using GPS logs. These GPS data were fused with weather data, allowing us to estimate both exogenous (such as weather and fuel price) and endogenous effects (inertia and activity plans) on individual’s car use behavior. To further understand the effects of fuel price on the environment, we estimated the effects of fuel price fluctuation on CO2 emissions by car. The results show a significant degree of inertia in car use behavior in response to increased fuel prices. Weather and fuel price showed significant effects on individual’s car using behavior. Moreover, fuel price shows two-week lagged effects on individual’s travel duration by car.  相似文献   

20.
It is well established that individual variations in driving style have a significant impact on vehicle energy efficiency. The literature shows certain parameters have been linked to good fuel economy, specifically acceleration, throttle use, number of stop/starts and gear change behaviours. The primary aim of this study was to examine what driving parameters are specifically related to good fuel economy using a non-homogeneous extended data set of vehicles and drivers over real-world driving scenarios spanning two countries. The analysis presented in this paper shows how three completely independent studies looking at the same factor (i.e., the influence of driver behaviour on fuel efficiency) can be evaluated, and, despite their notable differences in location, environment, route, vehicle and drivers, can be compared on broadly similar terms. The data from the three studies were analysed in two ways; firstly, using expert analysis and the second a purely data driven approach. The various models and experts concurred that a combination of at least one factor from the each of the categories of vehicle speed, engine speed, acceleration and throttle position were required to accurately predict the impact on fuel economy. The identification of standard deviation of speed as the primary contributing factor to fuel economy, as identified by both the expert and data driven analysis, is also an important finding. Finally, this study has illustrated how various seemingly independent studies can be brought together, analysed as a whole and meaningful conclusions extracted from the combined data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号