首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mobile ICTs and physical mobility: Review and research agenda   总被引:1,自引:0,他引:1  
The question of the relationship between the spread of communication tools and the physical mobility of individuals is not new and arose with the arrival of the fixed telephone and, more recently, the development of the Internet and especially e-commerce. The extraordinary spread of individual, especially portable, communication tools like the mobile phone, has recently generated new interest in this topic in the fields of transportation economics, geography and sociology. This article discusses the main topics that have been explored, from the debate between complementarity and substitution to analyses in terms of interactions with the spatiotemporal organization of daily activities, the size and maintenance of social networks, and, finally, perception of travel and spaces. We then identify several issues that we think merit further exploration.  相似文献   

2.
New mobility data sources like mobile phone traces have been shown to reveal individuals’ movements in space and time. However, socioeconomic attributes of travellers are missing in those data. Consequently, it is not possible to partition the population and have an in-depth understanding of the socio-demographic factors influencing travel behaviour. Aiming at filling this gap, we use mobile internet usage behaviour, including one’s preferred type of website and application (app) visited through mobile internet as well as the level of usage frequency, as a distinguishing element between different population segments. We compare the travel behaviour of each segment in terms of the preference for types of trip destinations. The point of interest (POI) data are used to cluster grid cells of a city according to the main function of a grid cell, serving as a reference to determine the type of trip destination. The method is tested for the city of Shanghai, China, by using a special mobile phone dataset that includes not only the spatial-temporal traces but also the mobile internet usage behaviour of the same users. We identify statistically significant relationships between a traveller’s favourite category of mobile internet content and more frequent types of trip destinations that he/she visits. For example, compared to others, people whose favourite type of app/website is in the “tourism” category significantly preferred to visit touristy areas. Moreover, users with different levels of internet usage intensity show different preferences for types of destinations as well. We found that people who used mobile internet more intensively were more likely to visit more commercial areas, and people who used it less preferred to have activities in predominantly residential areas.  相似文献   

3.
    
The evacuation operations problem aims to avoid or mitigate the potential loss of life in a region threatened or affected by a disaster. It is shaped to a large extent by the evolution of evacuation traffic resulting from the demand–supply interactions of the associated transportation network. Information-based control is a strategic tool for evacuation traffic operations as it can enable greater access to the affected population and more effective response. However, comparatively few studies have focused on the implementation of information-based control in evacuation operations. This study develops a control module for evacuation operations centered on addressing the demand–supply interactions by using behavior-consistent information strategies. These strategies incorporate the likely responses of evacuees to the information provided in the determination of route guidance information. The control module works as an iterative computational process involving an evacuee route choice model and a control model of information strategies to determine the route guidance information to direct evacuation traffic so as to approach a desired network traffic flow pattern. The problem is formulated as a fuzzy logic based optimization framework to explicitly incorporate practical concerns related to information dissemination characteristics and social equity in evacuation operations. Numerical experiments highlight the importance of accounting for the demand–supply interactions, as the use of behavior-consistent information strategies can lead evacuee route choices to approach the operator-desired proportions corresponding to the desired traffic pattern. The results also indicate that while a behavior-consistent information strategy can be effective, gaps with the desired route proportions can exist due to the discrete nature of the linguistic messages and the real-world difficulty in accurately modeling evacuees’ actual route choice behavior.  相似文献   

4.
The goal of this study is to develop and apply a new method for assessing social equity impacts of distance-based public transit fares. Shifting to a distance-based fare structure can disproportionately favor or penalize different subgroups of a population based on variations in settlement patterns, travel needs, and most importantly, transit use. According to federal law, such disparities must be evaluated by the transit agency, but the area-based techniques identified by the Federal Transit Authority for assessing discrimination fail to account for disparities in distances travelled by transit users. This means that transit agencies currently lack guidelines for assessing the social equity impacts of replacing flat fare with distance-based fare structures. Our solution is to incorporate a joint ordinal/continuous model of trip generation and distance travelled into a GIS Decision Support System. The system enables a transit planner to visualize and compare distance travelled and transit-cost maps for different population profiles and fare structures. We apply the method to a case study in the Wasatch Front, Utah, where the Utah Transit Authority is exploring a switch to a distance-based fare structure. The analysis reveals that overall distance-based fares benefit low-income, elderly, and non-white populations. However, the effect is geographically uneven, and may be negative for members of these groups living on the urban fringe.  相似文献   

5.
Passively generated mobile phone dataset is emerging as a new data source for research in human mobility patterns. Information on individuals’ trajectories is not directly available from such data; they must be inferred. Many questions remain in terms how well we can capture human mobility patterns from these datasets. Only one study has compared the results from a mobile phone dataset to those from the National Household Travel Survey (NHTS), though the comparison is on two different populations and samples. This study is a very first attempt that develops a procedure to generate a simulated mobile phone dataset containing the ground truth information. This procedure can be used by other researchers and practitioners who are interested in using mobile phone data and want to formally evaluate the effectiveness of an algorithm.To identify activity locations from mobile phone traces, we develop an ensemble of methods: a model-based clustering method to identify clusters, a logistic regression model to distinguish between activity and travel clusters, and a set of behavior-based algorithms to detect types of locations visited. We show that the distribution of the activity locations identified from the simulated mobile phone dataset resembles the ground truth better than the existing studies. For home locations, 70% and 97% of identified homes are within 100 and 1000 m from the truth, respectively. For work places, 65% and 86% of the identified work places are within 100 and 1000 m from the true ones, respectively. These results point to the possibility of using these passively generated mobile phone datasets to supplement or even replace household travel surveys in transportation planning in the future.  相似文献   

6.
In this research, we propose a methodology to develop OD matrices using mobile phone Call Detail Records (CDR) and limited traffic counts. CDR, which consist of time stamped tower locations with caller IDs, are analyzed first and trips occurring within certain time windows are used to generate tower-to-tower transient OD matrices for different time periods. These are then associated with corresponding nodes of the traffic network and converted to node-to-node transient OD matrices. The actual OD matrices are derived by scaling up these node-to-node transient OD matrices. An optimization based approach, in conjunction with a microscopic traffic simulation platform, is used to determine the scaling factors that result best matches with the observed traffic counts. The methodology is demonstrated using CDR from 2.87 million users of Dhaka, Bangladesh over a month and traffic counts from 13 key locations over 3 days of that month. The applicability of the methodology is supported by a validation study.  相似文献   

7.
In probe-based traffic monitoring systems, traffic conditions can be inferred based on the position data of a set of periodically polled probe vehicles. In such systems, the two consecutive polled positions do not necessarily correspond to the end points of individual links. Obtaining estimates of travel time at the individual link level requires the total traversal time (which is equal to the polling interval duration) be decomposed. This paper presents an algorithm for solving the problem of decomposing the traversal time to times taken to traverse individual road segments on the route. The proposed algorithm assumes minimal information about the network, namely network topography (i.e. links and nodes) and the free flow speed of each link. Unlike existing deterministic methods, the proposed solution algorithm defines a likelihood function that is maximized to solve for the most likely travel time for each road segment on the traversed route. The proposed scheme is evaluated using simulated data and compared to a benchmark deterministic method. The evaluation results suggest that the proposed method outperforms the bench mark method and on average improves the accuracy of the estimated link travel times by up to 90%.  相似文献   

8.
    
One of the important factors affecting evacuation performance is the departure time choices made by evacuees. Simultaneous departures of evacuees can lead to overloading of road networks causing congestion. We are especially interested in cases when evacuees subject to little or no risk of exposure evacuate along with evacuees subject to higher risk of threat (also known as shadow evacuation). One of the reasons for correlated evacuee departures is higher perceived risk of threat spread through social contacts. In this work, we study an evacuation scenario consisting of a high risk region and a surrounding low risk area. We propose a probabilistic evacuee departure time model incorporating both evacuee individual characteristics and the underlying evacuee social network. We find that the performance of an evacuation process can be improved by forcing a small subset of evacuees (inhibitors) in the low risk area to delay their departure. The performance of an evacuation is measured by both average travel time of the population and total evacuation time of the high risk evacuees. We derive closed form expressions for average travel time for ER random network. A detailed experimental analysis of various inhibitor selection strategies and their effectiveness on different social network topologies and risk distribution is performed. Results indicate that significant improvement in evacuation performance can be achieved in scenarios where evacuee social networks have short average path lengths and topologically influential evacuees do not belong to the high risk regions. Additionally, communities with stronger ties improve evacuation performance.  相似文献   

9.
Knowledge on human behaviour in emergency is crucial to increase the safety of buildings and transportation systems. Decision making during evacuations implies different choices, of which one of the most important concerns is the escape route. The choice of a route may involve local decisions on alternative exits from an enclosed environment. This study investigates the effect of environmental (presence of smoke, emergency lighting and distance of exit) and social factors (interaction with evacuees close to the exits and with those near the decision-maker) on local exit choice. This goal is pursued using an online stated preference survey carried out making use of non-immersive virtual reality. A sample of 1503 participants is obtained and a mixed logit model is calibrated using these data. The model shows that the presence of smoke, emergency lighting, distance of exit, number of evacuees near the exits and the decision-maker and flow of evacuees through the exits significantly affect local exit choice. Moreover, the model indicates that decision making is affected by a high degree of behavioural uncertainty. Our findings support the improvement of evacuation models and the accuracy of their results, which can assist in designing and managing building and transportation systems. The main aim of this study is to enrich the understanding of how local exit choices are made and how behavioural uncertainty affects these choices.  相似文献   

10.
The use of mobile phones while driving—one of the most common driver distractions—has been a significant research interest during the most recent decade. While there has been a considerable amount research and excellent reviews on how mobile phone distractions influence various aspects of driving performance, the mechanisms by which the interactions with mobile phone affect driver performance is relatively unexamined. As such, the aim of this study is to examine the mechanisms involved with mobile phone distractions such as conversing, texting, and reading and the driving task, and subsequent outcomes. A novel human-machine framework is proposed to isolate the components and various interactions associated with mobile phone distracted driving. The proposed framework specifies the impacts of mobile phone distraction as an inter-related system of outcomes such as speed selection, lane deviations and crashes; human-car controls such as steering control and brake pedal use and human-environment interactions such as visual scanning and navigation. Eleven literature-review/meta-analyses papers and 62 recent research articles from 2005 to 2015 are critically reviewed and synthesised following a systematic classification scheme derived from the human-machine system framework. The analysis shows that while many studies have attempted to measure system outcomes or driving performance, research on how drivers interactively manage in-vehicle secondary tasks and adapt their driving behaviour while distracted is scant. A systematic approach may bolster efforts to examine comprehensively the performance of distracted drivers and their impact over the transportation system by considering all system components and interactions of drivers with mobile phones and vehicles. The proposed human-machine framework not only contributes to the literature on mobile phone distraction and safety, but also assists in identifying the research needs and promising strategies for mitigating mobile phone-related safety issues. Technology based countermeasures that can provide real-time feedback or alerts to drivers based on eye/head movements in conjunction with vehicle dynamics should be an important research direction.  相似文献   

11.
    
Social equity is increasingly becoming an important objective in transport planning and project evaluation. This paper provides a framework and an empirical investigation in the Greater Toronto and Hamilton Area (GTHA) examining the links between public transit accessibility and the risks of social exclusion, simply understood as the suppressed ability to conduct daily activities at normal levels. Specifically, we use a large-sample travel survey to present a new transport-geography concept termed participation deserts, neighbourhood-level clusters of lower than expected activity participation. We then use multivariate models to estimate where, and for whom, improvements in transit accessibility will effectively increase activity participation and reduce risks of transport-related social exclusion. Our results show that neighbourhoods with high concentrations of low-income and zero-car households located outside of major transit corridors are the most sensitive to having improvements in accessibility increase daily activity participation rates. We contend that transit investments providing better connections to these neighbourhoods would have the greatest benefit in terms of alleviating existing inequalities and reducing the risks of social exclusion. The ability for transport investments to liberate suppressed activity participation is not currently being predicted or valued in existing transport evaluation methodologies, but there is great potential in doing so in order to capture the social equity benefits associated with increasing transit accessibility.  相似文献   

12.
    
This paper explores the potential role of individual trip characteristics and social capital network variables in the choice of transport mode. A sample of around 100 individuals living or working in one suburb of Madrid (i.e. Las Rosas district of Madrid) participated in a smartphone short panel survey, entering travel data for an entire working week. A Mixed Logit model was estimated with this data to analyze shifts to metro as a consequence of the opening of two new stations in the area. Apart from classical explanatory variables, such as travel time and cost, gender, license and car ownership, the model incorporated two “social capital network” variables: participation in voluntary activities and receiving help for various tasks (i.e. child care, housekeeping, etc.). Both variables improved the capacity of the model to explain transport mode shifts. Further, our results confirm that the shift towards metro was higher in the case of people “helped” and lower for those participating in some voluntary activities.  相似文献   

13.
    
In the face of rapidly escalating costs of aircraft fuel, since the early 1970s, the aerospace industry has embarked on a program of measures to reduce fuel consumption. This article describes an integrated set of measures which have been undertaken by Lockheed‐California to improve the fuel requirements of the Tristar, a wide‐bodied three engine medium to long range aircraft. Measures include operational changes, improvements to maintenance practices, long term hardware modifications and technological advances.  相似文献   

14.
Wireless ICTs are often used in public transport. Using survey data collected amongst 98 train travellers this article aims to gain insight into important factors that affect train travellers’ intentions to communicate with distant others while travelling. More specifically, the focus is on the decision-making process that leads to the intention to choose for a confidential conversation either via ‘audible’ mobile phone or via ‘silent’ SMS/e-mail. An approach that is related to the Extended Model of Goal-directed Behaviour (EMGB) is applied. Structural equation modelling results indicate that in particular past SMS behaviour, the desire to communicate (goal desire), the perceived efficacy and controllability influence the intention to conduct a confidential phone conversation in the train. The influence of the social environment (e.g. eavesdropping) seems to be less important. Several EMGB constructs are strongly influenced by age. It seems that older respondents have more negative attitudes towards telephoning while travelling by train, and find it more difficult to call other people in such a situation. Finally, they have a lower intention than younger respondents to conduct a confidential conversation over the phone while travelling.
Martin DijstEmail:
  相似文献   

15.
    
Location-based check-in services in various social media applications have enabled individuals to share their activity-related choices providing a new source of human activity data. Although geo-location data has the potential to infer multi-day patterns of individual activities, appropriate methodological approaches are needed. This paper presents a technique to analyze large-scale geo-location data from social media to infer individual activity patterns. A data-driven modeling approach, based on topic modeling, is proposed to classify patterns in individual activity choices. The model provides an activity generation mechanism which when combined with the data from traditional surveys is potentially a useful component of an activity-travel simulator. Using the model, aggregate patterns of users’ weekly activities are extracted from the data. The model is extended to also find user-specific activity patterns. We extend the model to account for missing activities (a major limitation of social media data) and demonstrate how information from activity-based diaries can be complemented with longitudinal geo-location information. This work provides foundational tools that can be used when geo-location data is available to predict disaggregate activity patterns.  相似文献   

16.
    
Network matching is frequently needed for integrating data that come from different sources. Traditional ways of finding correspondences between networks are time-consuming and require considerable manual manipulation. This paper describes a three-stage matching algorithm (node matching, segment matching, and edge matching) that combines bottom-up and top-down procedures to carry out the matching computation. As it uses sensitive matching measures, the proposed algorithm promises good improvement to existing algorithms. An experiment of matching two waterway networks is reported in the paper. The results of this experiment demonstrate that a reasonable matching rate and good computational efficiency can be achieved with this algorithm. The paper also briefly discusses necessary improvements in areas of linear alignment, aspatial matching and higher-level matching.  相似文献   

17.
    
Understanding how destination choice and business clusters are connected is of great importance for designing sustainable cities, fostering flourishing business clusters, and building livable communities. As sharing locations and activities on social media platforms becomes increasingly popular, such data can reveal destination choice and activity space which can shed light on human-environment relationships. To this end, this research models the relationship between characteristics of business clusters and check-in activities from Los Angeles County, California. Business clusters are analyzed via two lenses: the supply side (employment data by industry) and the demand side (on-line check-in data). Spatial and statistical analyses are performed to understand how land use and transportation network features affect the popularity of the identified clusters and their relationships. Our results suggest that a cluster with more employment opportunities and more types of employment is associated with more check-ins. A business cluster that has access to parks or recreational services is also more popular. A business cluster with a longer road network and better connectivity of roads is associated with more check-ins. The visualization of the common visitors between clusters reveals that there are a few clusters with outstanding strong ties, while most have modest ties with each other. Our findings have implications on the influence of urban design on the popularity of business clusters.  相似文献   

18.
This paper proposes a new spatial multivariate count model to jointly analyze the traffic crash-related counts of pedestrians and bicyclists by injury severity. The modeling framework is applied to predict injury counts at a Census tract level, based on crash data from Manhattan, New York. The results highlight the need to use a multivariate modeling system for the analysis of injury counts by road-user type and injury severity level, while also accommodating spatial dependence effects in injury counts.  相似文献   

19.
    
The origin–destination matrix is an important source of information describing transport demand in a region. Most commonly used methods for matrix estimation use link volumes collected on a subset of links in order to update an existing matrix. Traditional volume data collection methods have significant shortcomings because of the high costs involved and the fact that detectors only provide status information at specified locations in the network. Better matrix estimates can be obtained when information is available about the overall distribution of traffic through time and space. Other existing technologies are not used in matrix estimation methods because they collect volume data aggregated on groups of links, rather than on single links. That is the case of mobile systems. Mobile phones sometimes cannot provide location accuracy for estimating flows on single links but do so on groups of links; in contrast, data can be acquired over a wider coverage without additional costs. This paper presents a methodology adapted to the concept of volume aggregated on groups of links in order to use any available volume data source in traditional matrix estimation methodologies. To calculate volume data, we have used a model that has had promising results in transforming phone call data into traffic movement data. The proposed methodology using vehicle volumes obtained by such a model is applied over a large real network as a case study. The experimental results reveal the efficiency and consistency of the solution proposed, making the alternative attractive for practical applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
    
Major technological and infrastructural changes over the next decades, such as the introduction of autonomous vehicles, implementation of mileage-based fees, carsharing and ridesharing are expected to have a profound impact on lifestyles and travel behavior. Current travel demand models are unable to predict long-range trends in travel behavior as they do not entail a mechanism that projects membership and market share of new modes of transport (Uber, Lyft, etc.). We propose integrating discrete choice and technology adoption models to address the aforementioned issue. In order to do so, we build on the formulation of discrete mixture models and specifically Latent Class Choice Models (LCCMs), which were integrated with a network effect model. The network effect model quantifies the impact of the spatial/network effect of the new technology on the utility of adoption. We adopted a confirmatory approach to estimating our dynamic LCCM based on findings from the technology diffusion literature that focus on defining two distinct types of adopters: innovator/early adopters and imitators. LCCMs allow for heterogeneity in the utility of adoption for the various market segments i.e. innovators/early adopters, imitators and non-adopters. We make use of revealed preference (RP) time series data from a one-way carsharing system in a major city in the United States to estimate model parameters. The data entails a complete set of member enrollment for the carsharing service for a time period of 2.5 years after being launched. Consistent with the technology diffusion literature, our model identifies three latent classes whose utility of adoption have a well-defined set of preferences that are significant and behaviorally consistent. The technology adoption model predicts the probability that a certain individual will adopt the service at a certain time period, and is explained by social influences, network effect, socio-demographics and level-of-service attributes. Finally, the model was calibrated and then used to forecast adoption of the carsharing system for potential investment strategy scenarios. A couple of takeaways from the adoption forecasts were: (1) placing a new station/pod for the carsharing system outside a major technology firm induces the highest expected increase in the monthly number of adopters; and (2) no significant difference in the expected number of monthly adopters for the downtown region will exist between having a station or on-street parking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号