共查询到20条相似文献,搜索用时 0 毫秒
1.
Bin Yu William H.K. Lam Mei Lam Tam 《Transportation Research Part C: Emerging Technologies》2011,19(6):1157-1170
Provision of accurate bus arrival information is vital to passengers for reducing their anxieties and waiting times at bus stop. This paper proposes models to predict bus arrival times at the same bus stop but with different routes. In the proposed models, bus running times of multiple routes are used for predicting the bus arrival time of each of these bus routes. Several methods, which include support vector machine (SVM), artificial neural network (ANN), k nearest neighbours algorithm (k-NN) and linear regression (LR), are adopted for the bus arrival time prediction. Observation surveys are conducted to collect bus running and arrival time data for validation of the proposed models. The results show that the proposed models are more accurate than the models based on the bus running times of single route. Moreover, it is found that the SVM model performs the best among the four proposed models for predicting the bus arrival times at bus stop with multiple routes. 相似文献
2.
We propose machine learning models that capture the relation between passenger train arrival delays and various characteristics of a railway system. Such models can be used at the tactical level to evaluate effects of various changes in a railway system on train delays. We present the first application of support vector regression in the analysis of train delays and compare its performance with the artificial neural networks which have been commonly used for such problems. Statistical comparison of the two models indicates that the support vector regression outperforms the artificial neural networks. Data for this analysis are collected from Serbian Railways and include expert opinions about the influence of infrastructure along different routes on train arrival delays. 相似文献
3.
This study aims to determine an eco-friendly path that results in minimum CO2 emissions while satisfying a specified budget for travel time. First, an aggregated CO2 emission model for light-duty cars is developed in a link-based level using a support vector machine. Second, a heuristic k-shortest path algorithm is proposed to solve the constrained shortest path problem. Finally, the CO2 emission model and the proposed eco-routing model are validated in a real-world network. Specifically, the benefit of the trade-off between CO2 emission reduction and the travel time budget is discussed by carrying out sensitivity analysis on a network-wide scale. A greater spare time budget may enable the eco-routing to search for the most eco-friendly path with higher probability. Compared to the original routes selected by travelers, the eco-friendly routes can save an average of 11% of CO2 emissions for the trip OD pairs with a straight distance between 6 km and 9 km when the travel time budget is set to 10% above the least travel time. The CO2 emission can also be reduced to some degree for other OD pairs by using eco-routing. Furthermore, the impact of market penetration of eco-routing users is quantified on the potential benefit for the environment and travel-time saving. 相似文献
4.
The ever-increasing use of cars is a big problem in metropolitan areas. To manage the traffic stream and alleviate air pollution,
most metropolitan governments are attempting to discourage the use of cars. Nevertheless, the results have not been satisfactory.
It is well known that normal-choice riders choose their travel mode based on utility, which is determined by mode-specific
impedances and individual characteristics. On the other hand, this study focuses on identifying car-dependent commuters who
tend to keep driving cars regardless of the circumstances they are confronted with. For this study, psychometric factors characterizing
car-dependent commuters were investigated. However, the performance of the mode-choice model was not sufficiently enhanced
despite incorporation of the psychometric factors. The performance improved considerably when the car-dependent commuters
were excluded. Based on psychometric factors, the support vector machine successfully separated the car-dependent commuters
from normal-choice riders.
相似文献
Keemin SohnEmail: |
5.
为了有效地预测桃子垭隧道揭煤段是否存在煤与瓦斯突出危险性,文章根据煤与瓦斯突出综合假说及《防治煤与瓦斯突出规定》,确定了影响煤与瓦斯突出的9个关键因素。由于评价因子与突出危险程度之间存在着复杂的非线性映射关系,因此选择了非线性支持向量机(SVM)方法对隧道煤与瓦斯突出危险性进行预测研究。结合项目实际情况确定了各训练样本的具体参数,采用单项指标法、最优分类决策函数及MATLAB SVM Toolbox软件对选定的训练样本进行了煤与瓦斯突出危险性预测对比。通过N7和N8两个测点的预测结果表明,桃子垭隧道揭煤段存在煤与瓦斯突出危险性,必须做好相应的揭煤防突工作。 相似文献
6.
In this paper, we present a new approach to value the willingness to pay to reduce road noise annoyance using an artificial neural network ensemble. The model predicts, with precision and accuracy, a range for willingness to pay from subjective assessments of noise, a modelled noise exposure level, and both demographic and socio-economic conditions. The results were compared to an ordered probit econometric model in terms of the performance mean relative error and obtained 85.7% better accuracy. The results of this study show that the applied methodology allows the model to reach an adequate generalisation level, and can be applicable as a tool for determining the cost of transportation noise in order to obtain financial resources for action plans. 相似文献
7.
文章针对高速公路挖方边坡设计的特点和要求,结合依托工程实例,阐述了基于支持向量机和粒子群算法的智能方法在高速公路挖方边坡优化设计中的具体应用,为高速公路挖方边坡优化设计提供参考。 相似文献
8.
A promising alternative transportation mode to address growing transportation and environmental issues is bicycle transportation, which is human-powered and emission-free. To increase the use of bicycles, it is fundamental to provide bicycle-friendly environments. The scientific assessment of a bicyclist’s perception of roadway environment, safety and comfort is of great interest. This study developed a methodology for categorizing bicycling environments defined by the bicyclist’s perceived level of safety and comfort. Second-by-second bicycle speed data were collected using global positioning systems (GPS) on public bicycles. A set of features representing the level of bicycling environments was extracted from the GPS-based bicycle speed and acceleration data. These data were used as inputs for the proposed categorization algorithm. A support vector machine (SVM), which is a well-known heuristic classifier, was adopted in this study. A promising rate of 81.6% for correct classification demonstrated the technical feasibility of the proposed algorithm. In addition, a framework for bicycle traffic monitoring based on data and outcomes derived from this study was discussed, which is a novel feature for traffic surveillance and monitoring. 相似文献
9.
衬砌背后空洞及其填充物对隧道结构安全具有重要影响,开展空洞探测识别对于结构安全评估和病害处置具有重要意义。首先采用室内试验和FDTD正演模拟相结合的方法,获得了空洞内填充空气、水、干砂、湿砂条件下的雷达图谱数据,并对不同填充物波形规律进行对比分析;然后,基于支持向量机算法对波形特征进行提取和分类识别,建立了一种空洞填充物的人工智能辨识方法。研究结果表明,采用傅里叶变换前的平均值、方差、平均绝对离差和傅里叶变换后的最大幅度值max(fft(X))四个统计量作为支持向量机的识别特征,可以有效区分出衬砌背后填充物的六种类型;当采取单一倾向数据时,识别准确率较好,六种物质二分类问题准确率均可以达到90%以上。 相似文献
10.
11.
探地雷达是检测隧道衬砌空洞最为有效的方法之一,但检测数据的解析始终是限制其广泛应用的关键。基于支持向量机的基本理论,文章建立了一套隧道衬砌空洞探地雷达图像的机器识别方法,该方法包括图像预处理、特征提取和支持向量机识别三个步骤。首先,探地雷达图像需经过零时修正、滤波、偏移、增益等预处理以提高信噪比;其次,对图像的时域信号进行分段,在分段信号上提取方差、标准绝对偏差和四阶矩三个统计量作为图像特征;最后,利用已知数据对支持向量机模型进行训练,并用数值模拟和模型试验数据对训练好的支持向量机模型进行测试。结果表明,该方法不仅能够准确识别隧道衬砌和围岩内的空洞,还可以对空洞埋深及横向分布范围做出较准确的判断。 相似文献
12.
The main challenge facing the air quality management authorities in most cities is meeting the air quality limits and objectives in areas where road traffic is high. The difficulty and uncertainties associated with the estimation and prediction of the road traffic contribution to the overall air quality levels is the major contributing factor. In this paper, particulate matter (PM10) data from 10 monitoring sites in London was investigated with a view to estimating and developing Artificial Neural Network models (ANN) for predicting the impact of the road traffic on the levels of PM10 concentration in London. Twin studies in conjunction with bivariate polar plots were used to identify and estimate the contribution of road traffic and other sources of PM10 at the monitoring sites. The road traffic was found to have contributed between 24% and 62% of the hourly average roadside PM10 concentrations. The ANN models performed well in predicting the road contributions with their R-values ranging between 0.6 and 0.9, FAC2 between 0.6 and 0.95, and the normalised mean bias between 0.01 and 0.11. The hourly emission rates of the vehicles were found to be the most contributing input variables to the outputs of the ANN models followed by background PM10, gaseous pollutants and meteorological variables respectively. 相似文献
13.
Travel surveys based on global positioning system (GPS) data have exponentially increased over the past decades. Trip characteristics, including trip ends, travel modes, and trip purposes need to be detected from GPS data. Compared with other trip characteristics, studies on trip purpose detection are limited. These studies struggle with three types of limitations, namely, data validation, classification approach-related issues, and result comparison under multiple scenarios. Therefore, we attempt to obtain full understanding and improve these three aspects when detecting trip purposes in the current study. First, a smartphone-based travel survey is employed to collect GPS data, and a surveyor-intervened prompted recall survey is used to validate trip characteristics automatically detected from the GPS data. Second, artificial neural networks combined with particle swarm optimization are used to detect trip purposes from the GPS data. Third, four scenarios are constructed by employing two methods for land-use type coding, i.e., polygon-based information and point of interest, and two methods for selecting training dataset, i.e., equal proportion selection and equal number selection. The accuracy of trip purpose detection is then compared under these scenarios. The highest accuracies of 97.22% for the training dataset and 96.53% for the test dataset are achieved under the scenario of polygon-based information and equal proportion selection by comparing the detected and validated trip purposes. Promising results indicate that a smartphone-based travel survey can complement conventional travel surveys. 相似文献
14.
文章针对某采用双侧壁导洞法施工的大跨隧道在导洞施工过程中的临时支护破坏现象,结合实际的净空收敛监控数据对支护内力进行了反分析,重点就支护破坏形成原因进行了分析。分析结果表明:当导洞下台阶开挖时,导洞内壁会产生较大的水平变形,且后续导洞开挖对先开挖侧导洞临时支护变形影响较大;下台阶位置处临时支护以承受弯曲应力为主,受力状态较为不利,易因弯曲应力过大而导致拉裂破坏;先行开挖侧导洞临时支护在后开挖侧导洞施工的反复影响下,无论是轴向应变还是弯曲应变均明显高于后开挖侧导洞,破坏程度因此也更为严重。 相似文献
15.
沉降速率法在软基沉降分析中的应用 总被引:1,自引:0,他引:1
文章结合国内沿海某机场飞行区扩建项目软基处理工程实例,对比分析了双曲线法、三点法、Asaoka法和沉降速率法的主固结沉降量推算结果,指出了沉降速率法的优势,并应用沉降速率法准确的进行了沉降预测和卸载时间预测。 相似文献
16.
民航运输是云南省在进行综合交通运输建设的重点之一,也是该省在未来\"十四五\"(2021-2025年)和\"十五五\"(2026-2030年)规划期间的研究热点。本文以云南省为研究范围,以省内民航客运为研究对象,选取省内主要的社会经济因素为影响因子,运用主成分分析法(PCA)、反向传播神经网络算法(BP神经网络算法)和回归分析法,构建了省内民航客运的预测模型,得出省内各主要机场在\"十四五\"末和\"十五五\"末的预计旅客吞吐量,对省政府在进行机场改扩建上有一定的指导意义。 相似文献
17.
为了降低埋地管道腐蚀影响因素之间的复杂相关性,提高腐蚀预测精度,文中提出一种基于自适应免疫遗传算法-加权最小二乘支持向量机(AIGA-WLSSVM)的埋地管道腐蚀速率预测建模方法,并采用AIGA优化模型参数,进一步提高模型的学习能力和稳定性。最后通过实例分析验证了AIGA-WLSSVM建模方法在埋地管道腐蚀速率预测中的可行性和有效性,为埋地管道的检修与更换提供参考。 相似文献
18.
Stephen Godwin 《运输规划与技术》2013,36(1):25-36
This paper presents an artificial neural network (ANN) based method for estimating route travel times between individual locations in an urban traffic network. Fast and accurate estimation of route travel times is required by the vehicle routing and scheduling process involved in many fleet vehicle operation systems such as dial‐a‐ride paratransit, school bus, and private delivery services. The methodology developed in this paper assumes that route travel times are time‐dependent and stochastic and their means and standard deviations need to be estimated. Three feed‐forward neural networks are developed to model the travel time behaviour during different time periods of the day‐the AM peak, the PM peak, and the off‐peak. These models are subsequently trained and tested using data simulated on the road network for the City of Edmonton, Alberta. A comparison of the ANN model with a traditional distance‐based model and a shortest path algorithm is then presented. The practical implication of the ANN method is subsequently demonstrated within a dial‐a‐ride paratransit vehicle routing and scheduling problem. The computational results show that the ANN‐based route travel time estimation model is appropriate, with respect to accuracy and speed, for use in real applications. 相似文献
19.
文章从定量和定性两个角度,建立了快速路网运行效率的综合评价指标体系,并利用DEA方法建立快速路网综合评价模型,通过实例对城市快速路网的运行效率进行有效性评价分析。结果表明,该方法具有较强的可操作性和实用性。 相似文献
20.
This paper applies a novel adaptive approach consisting of Artificial Neural Network (ANN) and Fuzzy Linear Regression (FLR) to improve car ownership forecasting in complex, ambiguous, and uncertain environments. This integrated approach is applied to forecast car ownership in Iran from 1930 to 2007. In this study, the level of car ownership is viewed as the result of demographic, politico-social, and urban structure factors including average family size, total population density, urban population density, urbanization rate, gross national product per capita, gasoline price, and total road length. To capture the potential complexity, uncertainty, and linearity relation between the car ownership function and its determinants, ANN and FLR (including eight well-known FLR) approaches are applied to the collected data. Next, the preferred ANN is selected based on sensitivity analysis results for the test data while the preferred FLR is identified with regard to ANOVA and MAPE results. The results obtained from the performance comparison demonstrate the considerable superiority of the preferred ANN over the preferred FLR regarding the nonlinear and complex nature of the car ownership function in Iran. This is the first study that presents an ANN-FLR approach for car ownership forecasting capable of handling complexity and non-linearity, uncertainty, pre-processing, and post-processing. 相似文献