首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Increasingly strict emissions standards are providing a major impetus to vehicle manufactures for developing advanced powertrain and after-treatment systems that can significantly reduce real driving emissions. The knowledge of the gaseous emissions from diesel engines under steady-state operation and under transient operation provides substantial information to analyze real driving emissions of diesel vehicles. While there are noteworthy advances in the assessment of road vehicle emissions from real driving and laboratory measurements, detailed information on real driving gaseous emissions are required in order to predict effectively the real-time gaseous emissions from a diesel vehicle under realistic driving conditions. In this work, experiments were performed to characterize the behavior of NOx, unburned HC, CO, and CO2 emitted from light-duty diesel vehicles that comply with Euro 6 emissions standards. The driving route fully reflected various real-world driving conditions such as urban, rural, and highway. The real-time emission measurements were conducted with a Portable Emissions Measurement System (PEMS) including a Global Positioning System (GPS). To investigate the gaseous emission characteristics, authors determined the road load coefficients of vehicle specific power (VSP) and regression coefficient between fuel use rate and VSP. Furthermore, this work revealed the correlation between the rates of average fuel use and each gaseous emission.  相似文献   

2.
The objective of the present study is the assessment of the environmental impact of a bivalent (bi-fuel) vehicle, running either on gasoline or compressed natural gas (CNG). To that aim, a Euro 6 passenger car was tested under various real-world driving conditions. In order to cover the full range of conventional powertrains currently in the market, the tests were also repeated on a Euro 6 diesel passenger car. Both cars were driven in two routes, the first complying with the regulation limits and the second going beyond them. Carbon monoxide (CO), nitrogen oxides (NOx) and particle number (PN) emissions were recorded using a Portable Emissions Measurement System (PEMS). Apart from the aggregated emission levels, in g/km, the exact emission location along the route was also assessed. Natural gas proved beneficial for CO and PN emissions, the level of which always remained below the respective legislation limits. On the other hand, under the dynamic driving conditions with gasoline, the relevant limits were exceeded. Cold start, occurring at the beginning of the urban part, and motorway driving were identified as major contributors to total emissions, especially in gasoline mode. However, the application of natural gas was associated with a penalty in NOx emissions, which were significantly increased as compared to gasoline. Local peaks within the urban part were identified in CNG mode. In any case, the diesel vehicle was by far the highest NOx emitter.  相似文献   

3.
To accurately estimate real-world vehicle emission at 1 Hz the road grade for each second of data must be quantified. Failure to incorporate road grade can result in over or underestimation of a vehicle’s power output and hence cause inaccuracy in the instantaneous emission estimate. This study proposes a simple LiDAR (Light Detection And Ranging) – GIS (Geographic Information System) road grade estimation methodology, using GIS software to interpolate the elevation for each second of data from a Digital Terrain Map (DTM). On-road carbon dioxide (CO2) emissions from a passenger car were recorded by Portable Emission Measurement System (PEMS) over 48 test laps through an urban-traffic network. The test lap was divided into 8 sections for micro-scale analysis. The PHEM instantaneous emission model (Hausberger, 2003) was employed to estimate the total CO2 emission through each lap and section. The addition of the LiDAR-GIS road grade to the PHEM modelling improved the accuracy of the CO2 emission predictions. The average PHEM estimate (with road grade) of the PEMS measured section total CO2 emission (n = 288) was 93%, with 90% of the PHEM estimates between 80% and 110% of the PEMS recorded value. The research suggests that instantaneous emission modelling with LiDAR-GIS calculated road grade is a viable method for generating accurate real-world micro-scale CO2 emission estimates. The sensitivity of the CO2 emission predictions to road grade was also tested by lessening and exaggerating the gradient profiles, and demonstrates that assuming a flat profile could cause considerable error in real-world CO2 emission estimation.  相似文献   

4.
Electric vehicles have the potential to lower emissions in the mobility sector, but especially high costs might hinder their market development. This paper aims to access environmental and economic impacts and potentials by comparing CO2-emissions and costs of small vehicles. Considering actual data it is analysed, if and under which conditions electric vehicles are financially competitive for private consumers and under which conditions emissions can be saved. For this, a multiple-stage approach is focusing on (1) emissions during production and operation, (2) private costs and (3) external costs of emissions. A model of total cost of ownership is applied for the analysis of private and external costs.Results show that emissions of electric vehicles exceed emissions of combustion engine vehicles in the production phase, but electric vehicles cause fewer emissions during operation. Total emissions can be saved by electric vehicles even with low annual driving distances (2500–5500 km/a today). Results highly depend on the form of electricity production.Today, private costs of electric vehicles exceed the costs of combustion engine vehicles. Due to cost decreases electric vehicles can gain financial advantages in the future. External costs are high, especially for combustion engine vehicles (up to 15% of private costs), but in none of the considered cases high enough to give electric vehicles a financial advantage today. This picture will change in the future.  相似文献   

5.
This paper examines the influence of compressed natural gas, liquefied petroleum gas and gasoline fuel on the exhaust emissions and the fuel consumption of a spark-ignition engine powered passenger car. The vehicle was driven according to the urban driving cycle and extra urban driving cycle speed profiles with the warmed-up engine. Cause and effect based analysis reveals potential for using different fuels to reduce vehicle emission and deficiencies associated with particular fuels. The highest tank to wheel efficiency and the lowest CO2 emission are observed with the natural gas fuelled vehicle, that also featured the highest total hydrocarbon emissions and high NOx emissions because of fast three way catalytic converter aging due the use of the compressed natural gas. Retrofitted liquefied petroleum gas fuel supply systems feature the greatest air-fuel ratio variations that result in the lowest TtW efficiency and in the highest NOx emissions of the liquefied gas fuelled vehicle.  相似文献   

6.
There have been a number of studies of the effectiveness of vehicle scrappage programs, which offer incentives to accelerated scrappage of older vehicles often thought to be high emitters. These programs are voluntary and aimed at replacement of household vehicles. In contrast, there is a gap in knowledge related to the emissions benefits of government fleet replacement (retirement) programs. In this study, the efficacy of a fleet replacement program for a local government agency in Northern Illinois, the Forest Preserve of DuPage County (FPDC), is examined using a probabilistic vehicle survival model that accounts for time-varying covariates such as vehicle age and gasoline price. The vehicle lifetime operating emissions are calculated based on the estimated vehicle survival probabilities from the survival model and compared with those derived using the EPA default fleet used in MOBILE6 and the fleet represented by the Oak Ridge National Laboratory (ORNL) survival curve. The results suggest that while there may be short term emission benefits of the FPDC fleet replacement plan, the long-term emission benefits are highly sensitive to economic factors (e.g., future gasoline price) and exhibit a decreasing trend. This indicates that an adaptive multi-stage replacement strategy as opposed to a fixed one is preferable to achieve optimal cost effectiveness.
Debbie A. NiemeierEmail:

Dr. Jie Lin (Jane)   is an assistant professor in Department of Civil and Materials Engineering and a researcher with the Institute for Environmental Science and Policy at University of Illinois at Chicago. Her current research is focused on transportation sustainability through holistic modeling of energy consumption and emissions associated with private, freight, and public transportation activities. Dr. Cynthia Chen   is an assistant professor in the civil engineering department at City College of New York. Her research expertise and interests cover travel behavior analysis, land use and transportation, transportation safety, and environmental analysis. Dr. Deb Niemeier   is a professor at UC Davis and her current research focus is on the nexus between transportation, land use and climate change, particularly how land use and transportation decisions affect energy consumption and contribute to climate change. She is considered an expert on transportation-air quality modeling and policy and sustainability.  相似文献   

7.
The European Clean Vehicle Directive was introduced in 2009 to create an obligation on public authorities to take into account the impact of energy consumption, carbon dioxide (CO2) emissions and pollutant emissions into their purchasing decisions for road transport vehicles. This should stimulate the market for clean and energy-efficient vehicles and improve transport's impact on environment, climate change and energy use. Therefore the so-called ‘Operational Lifetime Cost’ of a vehicle is calculated, divided into the cost for energy consumption, CO2 and pollutant (nitrous oxide, particulate matter, non-methane hydrocarbons) emissions. In Belgium, a different methodology has been developed to calculate the environmental impact of a vehicle, called ‘Ecoscore’, based on a well-to-wheel approach. More pollutants are included compared to the Clean Vehicle methodology, but also indirect emissions are taken into account. In this paper, both methodologies are compared and used to analyze the environmental performance of passenger cars with different fuel types and from different vehicle segments. Similar rankings between both methodologies are obtained; however, the large impact of energy use (and CO2 emissions) in the Clean Vehicle methodology disadvantages compressed natural gas cars, as well as diesel cars equipped with particulate filters, compared to the Ecoscore methodology.  相似文献   

8.
Given the shift toward energy efficient vehicles (EEVs) in recent years, it is important that the effects of this transition are properly examined. This paper investigates some of these effects by analyzing annual kilometers traveled (AKT) of private vehicle owners in Stockholm in 2008. The difference in emissions associated with EEV adoption is estimated, along with the effect of a congestion-pricing exemption for EEVs on vehicle usage. Propensity score matching is used to compare AKT rates of different vehicle owner groups based on the treatments of: EEV ownership and commuting across the cordon, controlling for confounding factors such as demographics. Through this procedure, rebound effects are identified, with some EEV owners found to have driven up to 12.2% further than non-EEV owners. Although some of these differences could be attributed to the congestion-pricing exemption, the results were not statistically significant. Overall, taking into account lifecycle emissions of each fuel type, average EEV emissions were 50.5% less than average non-EEV emissions, with this reduction in emissions offset by 2.0% due to rebound effects. Although it is important for policy-makers to consider the potential for unexpected negative effects in similar transitions, the overall benefit of greatly reduced emissions appears to outweigh any rebound effects present in this case study.  相似文献   

9.
This study evaluates effectiveness of driver education teaching greater fuel efficiency (Eco-Driving) in a real world setting in Australia. The driving behaviour, measured in fuel use (litres per 100 km of travel) of a sample of 1056 private drivers was monitored over seven months. 853 drivers received education in eco-driving techniques and 203 were monitored as a control group. A simple experimental design was applied comparing the pre and post training fuel use of the treated sample compared to a control sample. This study found the driver education led to a statistically significant reduction in fuel use of 4.6% or 0.51 litres per 100 km compared to the control group.  相似文献   

10.
The future of US transport energy requirements and emissions is uncertain. Transport policy research has explored a number of scenarios to better understand the future characteristics of US light-duty vehicles. Deterministic scenario analysis is, however, unable to identify the impact of uncertainty on the future US vehicle fleet emissions and energy use. Variables determining the future fleet emissions and fuel use are inherently uncertain and thus the shortfall in understanding the impact of uncertainty on the future of US transport needs to be addressed. This paper uses a stochastic technology and fleet assessment model to quantify the uncertainties in US vehicle fleet emissions and fuel use for a realistic yet ambitious pathway which results in about a 50% reduction in fleet GHG emissions in 2050. The results show the probability distribution of fleet emissions, fuel use, and energy consumption over time out to 2050. The expected value for the fleet fuel consumption is about 450 and 350 billion litres of gasoline equivalent with standard deviations of 40 and 80 in 2030 and 2050, respectively. The expected value for the fleet GHG emissions is about 1360 and 850 Mt CO2 equivalent with standard deviation of 130 and 230 in 2030 and 2050 respectively. The parameters that are major contributors to variations in emissions and fuel consumption are also identified and ranked through the uncertainty analysis. It is further shown that these major contributors change over time, and include parameters such as: vehicle scrappage rate, annual growth of vehicle kilometres travelled in the near term, total vehicle sales, fuel economy of the dominant naturally-aspirated spark ignition vehicles, and percentage of gasoline displaced by cellulosic ethanol. The findings in this paper demonstrate the importance of taking uncertainties into consideration when choosing amongst alternative fuel and emissions reduction pathways, in the light of their possible consequences.  相似文献   

11.
Several studies have shown that the type-approval data is not representative for real-world usage. Consequently, the emissions and fuel consumption of the vehicles are underestimated. Aiming at a more dynamic and worldwide harmonised test cycle, the new Worldwide Light-duty Test Cycle is being developed. To analyse the new cycle, we have studied emission results of a test programme of six vehicles on the test cycles WLTC (Worldwide Light-duty Test Cycle), NEDC (New European Driving Cycle) and CADC (Common Artemis Driving Cycle). This paper presents the results of that analysis using two different approaches. The analysis shows that the new driving cycle needs to exhibit realistic warm-up procedures to demonstrate that aftertreatment systems will operate effectively in real service; the first trip of the test cycle could have an important contribution to the total emissions depending on the length of the trip; and that there are some areas in the acceleration vs. vehicle speed map of the new WLTC that are not completely filled, especially between 70 and 110 km/h. For certain vehicles, this has a significant effect on total emissions when comparing this to the CADC.  相似文献   

12.
This study provides a comprehensive comparison of well-to-wheel (WTW) energy demand, WTW GHG emissions, and costs for conventional ICE and alternative passenger car powertrains, including full electric, hybrid, and fuel cell powertrains. Vehicle production, operation, maintenance, and disposal are considered, along with a range of hydrogen production processes, electricity mixes, ICE fuels, and battery types. Results are determined based on a reference vehicle, powertrain efficiencies, life cycle inventory data, and cost estimations. Powertrain performance is measured against a gasoline ICE vehicle. Energy carrier and battery production are found to be the largest contributors to WTW energy demand, GHG emissions, and costs; however, electric powertrain performance is highly sensitive to battery specific energy. ICE and full hybrid vehicles using alternative fuels to gasoline, and fuel cell vehicles using natural gas hydrogen production pathways, are the only powertrains which demonstrate reductions in all three evaluation categories simultaneously (i.e., WTW energy demand, emissions, and costs). Overall, however, WTW emission reductions depend more on the energy carrier production pathway than on the powertrain; hence, alternative energy carriers to gasoline for an ICE-based fleet (including hybrids) should be emphasized from a policy perspective in the short-term. This will ease the transition towards a low-emission fleet in Switzerland.  相似文献   

13.
The limited understanding of vehicular emissions in China, especially evaporative emissions, is one obstacle to establishing tighter standards. To evaluate tailpipe and evaporative emissions, two typical China IV vehicles and one Tier 2 vehicle with an onboard refuelling vapour recovery (ORVR) system were selected and tested. One of the China IV vehicles was fuelled with gasoline, E10 and M15, respectively, to investigate the effect of fuel properties on vehicular emissions. For each vehicle, cold-start tailpipe emission tests were conducted first, followed by an evaporation test. Based on the emission factors and real-world vehicle activity data, the annual tailpipe and evaporative hydrocarbon (HC) emissions of each vehicle were calculated and compared. The results show that E10 and M15 significantly reduced the tailpipe CO and particle number (PN) emissions but seriously aggravated the NOx emissions, especially for M15. The hot soak losses (HSLs) and diurnal breathing losses (DBLs) were slightly impacted by the fuel properties. The annual evaporative emissions with E10 and M15 were higher than that with gasoline. The ORVR system effectively controlled the evaporative emissions, especially for DBLs. Evaporative emissions from the China IV vehicles were 1.1–1.4 times the tailpipe HC emissions. Additionally, the evaporative emission factors of the China IV vehicles were almost 50% lower than the standard (2.0 g/test), whereas their annual evaporative emissions were almost 1.8–2.8 times higher than those from the Tier 2 vehicle. Therefore, controlling evaporative emissions currently remains a great need in China, and the ORVR might be a recommended evaporative control technology.  相似文献   

14.
The heavy reliance on petroleum-derived fuels such as gasoline in the transportation sector is one of the major causes of environmental pollution. For this reason, there is a critical need to develop cleaner alternative fuels. Butanol is an alcohol with four different isomers that can be blended with gasoline to produce cleaner alternative fuels because of their favourable physicochemical properties compared to ethanol. This study examined the effect of butanol isomer-gasoline blends on the performance and emission characteristics of a spark ignition engine. The butanol isomers; n-butanol, sec-butanol, tert-butanol and isobutanol are mixed with pure gasoline at a volume fraction of 20 vol%, and the physicochemical properties of these blends are measured. Tests are conducted on a SI engine at full throttle condition within an engine speed range of 1000–5000 rpm. The results show that there is a significant increase in the engine torque, brake power, brake specific fuel consumption and CO2 emissions with respect to those for pure gasoline. The butanol isomers-gasoline blends give slightly higher brake thermal efficiency and exhaust gas temperature than pure gasoline at higher engine speeds. The iBu20 blend (20 vol% of isobutanol in gasoline) gives the highest engine torque, brake power and brake thermal efficiency among all of the blends tested in this study. The isobutanol and n-butanol blend results in the lowest CO and HC emissions, respectively. In addition, all of the butanol isomer-gasoline blends yield lower NO emissions except for the isobutanol-gasoline blend.  相似文献   

15.
Abstract

A stated preference (SP) experiment of car ownership was conducted in Mumbai Metropolitan Region (MMR) of Maharashtra in India. A full factorial experiment was designed to considering various attributes such as travel time, travel cost, projected household income, car loan payment and servicing cost. Data on 357 individuals were collected which resulted in 3213 observations for the calibration of the work trip and recreational trip car ownership models. The car ownership alternatives considered 0, 1 and 2 cars. A multinomial logit framework was used to develop the car ownership model taking the household as a decision unit. The specification and results of the SP car ownership model are discussed. The observed and predicted values matched reasonably when the validity of the SP car ownership model was tested against revealed preference (RP) data. The car ownership models developed in this study exhibit a satisfactory goodness of fit. It is concluded that the SP modelling approach can be successfully used for modelling car ownership decisions of households in developing countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号