首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对高速道岔直尖轨非工作边表面出现纵向裂纹的问题,通过建立车辆道岔多体动力学模型和三维弹塑性轮轨接触有限元模型,分析倒圆弧半径对直尖轨等效应力及其作用位置的影响。结果表明:尖轨顶宽30mm到顶宽40mm断面间易发生非工作边表面裂纹,其中顶宽35mm断面的受力状态最为不利;倒圆弧半径取值越大,对尖轨降低值的影响越大,为降低对车辆轨道动力性能的影响,在相同条件下,应尽可能选择较小半径的倒圆弧;直尖轨倒圆弧能够有效降低内部的等效应力,并能增大应力作用位置到非工作边的距离;综合考虑直尖轨降低值和受力状态,倒圆弧半径取3mm时优于其他半径取值。  相似文献   

2.
针对重载货运专线75kg/m钢轨12号单开道岔曲线尖轨磨耗问题,考虑尖轨前端的结构特点,建立三维弹塑性接触有限元模型,计算分析不同磨耗阶段的机车车轮型面与不同断面处尖轨的接触情况。磨耗Ⅱ型机车车轮沿着进岔方向通过标准型面尖轨时,车轮与尖轨的接触位置是不断变化,由尖轨侧面向尖轨顶面过渡,轮轨接触的等效应力变大。随着车轮的磨耗,轮缘根部圆弧半径逐渐增大,磨耗尖轨上的等效应力要大于标准尖轨,且磨耗尖轨的变化幅度是标准尖轨的4倍多。距离尖轨尖端2m位置处的标准尖轨不能适用于所有磨耗阶段的机车车轮型面,应进行优化设计。  相似文献   

3.
以客运专线18号道岔为例,选取磨耗型踏面车轮,建立弹性基底约束条件下的道岔区转辙器部分轮轨接触计算模型,对尖轨轨头顶宽20~50 mm范围内轮载过渡区,尖轨及基本轨的轮轨接触应力进行了较为详细的分析。  相似文献   

4.
根据基本轨与尖轨的相对位置及轨下支撑方式,分析车轮与转辙器钢轨的接触特性,在考虑尖轨与基本轨相对运动的基础上,提出铁路道岔转辙器部件轮轨两点接触的计算方法,以18号单开道岔为例,对比分析了标准和磨耗车轮LMA踏面与钢轨匹配时的轮轨接触特性,验证两点接触计算方法的正确性和可行性。研究表明:车轮踏面磨耗后,轮轨接触点位置更多的位于尖轨轨距角附近,会增大尖轨的侧面磨耗;车轮踏面磨耗会导致轮载转移的位置后移,增大车辆进入道岔时轮对蛇形运动的距离和幅度,进而导致横向轮轨动力相互作用的增大;磨耗后的车轮踏面,其轮轨两点接触的可能区域分布较为分散,可能造成轮轨接触点的无规律跳跃,从而引起较大的轮轨冲击振动作用。  相似文献   

5.
研究目的:为研究地铁曲线尖轨道岔的不可逾越速度,本文以地铁9号曲线尖轨道岔为例,基于轮轨接触几何算法和车辆-道岔系统耦合动力学仿真计算,在综合考虑车辆侧向过岔时的安全性及平稳性的基础上确定曲线尖轨道岔的不可逾越速度,以期为列车折返能力的提高和城际轨道交通道岔的设计提供技术支持与储备。研究结论:(1)在尖轨顶宽40 mm时标准LM车轮型面与轨道接触点分布已经过渡到尖轨上,而磨耗状态LM车轮型面与钢轨的接触点分布可能在基本轨上或者尖轨上,轮载过渡位置延后;(2)车辆过岔时主要以车体横向加速度为控制指标确定不可逾越速度,因此在地铁车辆运行过程中可对车辆横向加速度进行实时监测,作为车辆运行安全性和平稳性的监测指标;(3)标准LM车轮型面时地铁9号曲线尖轨道岔的不可逾越速度为50 km/h,磨耗状态LM车轮型面时9号曲线尖轨道岔的不可逾越速度为45 km/h;(4)通过提高地铁车辆ATP顶篷速度来提高ATO速度,可缩短发车时间间隔,提高列车运行速度和对运量的储备;(5)通过对地铁曲线尖轨道岔不可逾越速度的分析,可对地铁车辆运行安全性和平稳性进行监测,并针对列车行车间隔加密后可能引起折返能力不足的问题,为道岔提速研发提供理论支持。  相似文献   

6.
研究目的:针对高速道岔尖轨的磨耗问题,目前高速铁路养护维修部门通过钢轨打磨、调整几何形位、更换钢轨件等措施进行定期整治,但多为基于工程经验和现场情况的被动性方法,整治效果并不显著,磨耗问题仍不断出现,无法从根本上彻底解决。因此,需要对道岔区轮轨相互作用关系进行深入研究,探明岔区钢轨磨耗的产生及发展规律,以及因磨耗引起的列车过岔动力学性能演化规律,从而有针对性地提出科学、合理的整治方法。研究结论:(1)随着道岔服役时间的增长,转辙器尖轨和基本轨的磨耗均不断加重;(2)直尖轨垂向磨耗情况较曲尖轨严重,两者垂向磨耗均是随着断面不断加宽呈现先增后减的趋势,分别在顶宽35 mm、50 mm断面位置最为严重;直、曲基本轨垂向磨耗均是随着断面的加宽总体呈减小的趋势;(3)曲尖轨侧磨情况明显较直尖轨严重,两者均是从3 mm宽断面开始呈现先增后减的趋势,直尖轨在顶宽5 mm断面位置侧磨最严重,曲尖轨在顶宽20 mm断面位置侧磨最严重;直、曲基本轨的侧磨程度基本相当且数值均较小;(4)随着尖轨磨耗程度的加剧,将会一定程度地导致轮轨动力相互作用的增大,进而提升了安全运行风险,但对车体振动加速度等舒适性指标则影响较弱;(5)本研究成果可为高速道岔设计、施工和运营维护提供一定参考。  相似文献   

7.
参考现场调研结果,为优化我国重载线路普遍使用的12号固定辙叉的受力状态,本文提出抬高翼轨高度和心轨加宽的优化方案,用以改变车轮在道岔上的滚动轨迹并提高心轨的承重能力。为验证优化效果,选取LM车轮型面为研究对象,运用迹线法、Kalker教授提出的CONTACT算法,建立车辆-道岔多刚体动力学模型,分别从静力学和动力学的角度分析道岔改进前后的服役性能。研究结果表明:辙叉型面优化前后几何不平顺、等效锥度等接触几何参数没有明显差别;对于顶宽20 mm断面,LM车轮与优化后辙叉接触时未与心轨接触,其接触应力降低至原接触应力的28%,可减少在辙叉使用时辙叉心轨和翼轨早期的磨耗;车辆通过优化前后的固定辙叉,其各项动力学指标均在规范安全限值之内,并且通过优化后的辙叉时轮轨横向力变化明显,最大值从22. 146 kN降低为4. 533 k N,脱轨系数的最大值从0. 186降低为0. 049。  相似文献   

8.
对国内某地铁线路的车轮磨耗规律进行了现场调查和分析。车轮磨耗集中于轮缘根部和踏面-25~30 mm范围。LM32模板动车车轮踏面磨耗突出区为-8~-4 mm,25万~40万km里程车轮最大磨耗量为2.5~4.0 mm。采用薄轮缘LM30模板镟轮的拖车车轮踏面磨耗集中在-10~10mm范围,19万km以内里程踏面磨耗量为0.2~0.5 mm。利用轮轨接触几何理论和轮轨滚动接触理论,研究不同车轮磨耗状态下的轮轨静态匹配性能,包括接触点对分布和轮轨接触应力,分析车轮表面裂纹的机理。车轮轮缘根部与钢轨轨距角集中接触容易导致接触光带偏向轨距角。轮缘根部及踏面上小曲率半径区与钢轨集中接触是产生车轮踏面接触疲劳的主要原因。  相似文献   

9.
为了改善地铁车轮出现的异常磨耗问题,对上海地铁3号线车辆车轮踏面DIN5573出现的磨耗进行测试,获得2种磨耗车轮踏面。在SIMPACK软件中建立了地铁车辆动力学仿真模型,计算得到未磨耗、凹形磨耗、沟槽状磨耗3种车轮踏面与TB60,60N钢轨型面匹配时轮对横移量,将其输入到用ABAQUS软件建立的轮轨三维弹塑性有限元模型,分析不同轮轨型面匹配对接触应力的影响。结果表明:3种车轮踏面与60N钢轨型面匹配时轮轨接触点均匀分布在轨顶和车轮踏面中部,等效锥度基本稳定;在半径350 m的曲线上,与TB60钢轨型面匹配相比,3种车轮踏面与60N钢轨型面匹配时轮轨最大接触应力最多减小384.9 MPa,钢轨、车轮最大Mises应力最大减幅分别为40%,35%。城市轨道交通小半径曲线地段较多,采用60N钢轨型面可以明显降低曲线外股的接触应力,减少轮缘磨耗和钢轨侧磨,从而降低钢轨疲劳伤损。  相似文献   

10.
基于刚柔多体混合建模理论,建立车辆-道岔耦合动力学模型和客货共线铁路道岔区轮轨接触应力瞬态分析模型,分析不同轮轨几何接触状态下轮轨接触应力分布特性,并提出了调整尖轨降低值、尖轨线型优化和道岔动态轨距优化3种减少轮轨动力作用、延长道岔使用寿命的技术方案,同时模拟了不同技术方案对道岔区轮轨关系的改善效果。  相似文献   

11.
针对国内现有米轨道岔由于技术标准低而不适用客运的实际情况,结合正在规划的相关旅游观光线路,对1 000 mm轨距50 kg/m钢轨10号单开道岔进行了设计研究,优化确定了道岔的平面尺寸,其半切断面较宽,尖轨直线段较长,尖轨冲击角较小,有利于提高尖轨的耐磨性能,并重点介绍了转辙器部分、辙叉部分和轨下基础的结构设计以及导曲线半径、轨距加宽和道岔各部间隔等各项参数的检算评估。  相似文献   

12.
轮轨接触应力对轮轨磨耗和滚动接触疲劳影响较大,因此精确计算轮轨接触点与接触应力非常重要。本文基于重载铁路轮轨标准型面,利用改进的轮对轴向切片投影法,准确找到轮轨多点接触。引入弹性压缩量,找到接触斑,利用一种精确计算轮轨接触应力的方法求得轮轨法向接触应力,并考虑轮轨摇头角和侧滚角的影响。结果表明:该方法在寻找轮轨多点接触与计算轮轨接触应力时结果较为准确、直接和全面;轮轨接触斑随着轮对横移和摇头角变化,呈现非椭圆形状;一侧车轮轮缘和轨距角处接触,曲率半径较小,轮轨法向接触应力最大值可达3 400MPa,而另一侧轮轨的法向接触应力均小于2 000MPa。在轮对横移量为0~3mm时,摇头角的增加使右轮轨接触斑面积减小,相应的接触应力增大;在轮对横移量为4~9mm时,摇头角的增加使右轮轨接触斑面积增大,相应的接触应力减小;摇头角的增加对左轮轨接触状态有利,但影响不明显。  相似文献   

13.
为解决曲线尖轨使用寿命短的技术难题,研究并实践了直曲组合型曲线尖轨技术。新尖轨采用相离半切线型,前端直线段长度为5 439 mm,是原曲线尖轨前端直线段长度的2倍。重载车辆—道岔动力学仿真计算结果表明,该设计可显著减小列车顺向出岔时作用在尖轨前端的横向力及磨耗指标,从而改变尖轨磨耗特性,延长尖轨使用寿命。尖轨磨耗和寿命观测试验表明:新尖轨最大磨耗发生在尖轨宽60~70 mm断面,使用寿命是传统曲线尖轨的3~4倍,表现出和传统曲线尖轨不同的磨耗特性。  相似文献   

14.
基于Nadal脱轨理论,提出了一种针对我国高速铁路道岔钢轨件廓形的检查方法。该方法根据车轮在道岔区的脱轨特征,以动车组车轮轮缘踏面特征为基础,分别制作4种检查样板,可模拟轮轨多种接触状态,以检查样板与钢轨断面的接触位置关系,从而判断车轮是否存在爬轨风险,并在实际线路上进行了初步试用。试用结果表明:检查样板能够覆盖道岔区全部钢轨件的检测,符合轮轨接触实际工况,检查样板可量化钢轨件廓形的安全余量。根据试用数据可知:逆向过车的道岔是日常养护维修关注的重点;对于道岔尖轨,尖端至顶宽20 mm断面更易造成车轮爬轨。  相似文献   

15.
针对高速铁路18号道岔,分别采用迹线法、三维非赫兹滚动接触理论、车辆-道岔耦合动力学模型计算分析车轮不对称磨耗对岔区轮轨接触几何关系、轮轨接触力学行为特征、车辆直逆向过岔动力学性能的影响规律。结果表明:当尖轨、基本轨两侧车轮不对称磨耗时,会出现明显的正负锥度突变现象,轮轨法向接触应力增大;当尖轨侧车轮比基本轨侧磨耗严重时,转辙器区会出现较为明显的轮对横移现象,轮轴横向力、脱轨系数及横向Sperling指数、磨耗指数等指标均增幅明显,其中尖轨侧车轮比基本轨侧磨耗严重且为同相磨耗时,结果最为不利。  相似文献   

16.
针对大秦铁路75kg/m钢轨12号高锰钢固定辙叉心轨处的磨耗问题,基于Kalker简化理论,建立车辆-道岔系统动力学模型。分析比较重载C80型货车侧向通过道岔辙叉区时,不同车轮和道岔型面匹配下的轮轨蠕滑力、轮轨接触斑面积、车轮滚动圆半径与车轮磨耗功率间的关系以及轮轨型面匹配程度和变化规律。结果表明:当车辆从翼轨行进到心轨时,其标准车轮滚动圆半径的突变值在4~5mm之间,相对于标准车轮,磨耗车轮的值降低了50%,对心轨的垂向冲击较小;轮对由翼轨过渡到心轨时,其左右磨耗车轮的滚动圆半径差值小于标准车轮,磨耗车轮的纵向蠕滑力相对标准车轮减低了45%~63%;磨耗功率大小与车轮滚动圆半径以及轮轨型面匹配程度有关。  相似文献   

17.
运用道岔系统动力学理论,考虑轨距加宽式转辙器的结构特性,建立列车/道岔耦合动力学模型,以350 km/h客运专线18号高速道岔为例,计算分析了列车以350 km/h直向及80 km/h侧向过岔时的动力特性.结果表明:转辙器轨距加宽可提高列车直、侧向过岔时的平稳性,降低直向过岔时尖轨的磨耗指数,减轻尖轨侧磨,增加尖轨开始受力截面的轨顶宽度;增大转辙器部位的动轮载、轮缘力及动应力,对尖轨受力不利;转辙器轨距加宽对列车侧向过岔的轮重减载率和脱轨系数有不利影响,对直向过岔的影响不大.因此,建议在我国350 km/h客运专线高速道岔设计中,暂不使用转辙器轨距加宽技术.  相似文献   

18.
王璞 《铁道建筑》2020,(4):80-83
基于有限元法建立弹性基底约束条件下30 t轴重重载道岔合金钢组合辙叉结构的轮轨接触耦合计算模型,对重载铁路道岔中典型的12号和18号合金钢组合辙叉,分别取3个特征位置进行钢轨应力和轮轨接触应力计算分析。结果表明:模型中辙叉受力与实际情况一致;2种辙叉计算结果一致;翼轨、心轨上的应力最大值分别发生在咽喉区、心轨顶宽20 mm处;考虑到顶宽20 mm处心轨的钢轨应力超出合金钢强度极限,建议对该处进行适当加强,并调整翼轨与心轨相对位置以减小心轨承载比例;由于心轨顶宽不足,轮轨接触面积过小导致顶宽20 mm处心轨承担过大的接触应力。  相似文献   

19.
为研究车轮型面演变对高速道岔区轮轨相互作用影响,以某CRH2型动车组和250 km/h 18号高速道岔为对象,基于迹线法原理和三维非赫兹滚动接触理论,计算分析了列车在不同运营里程下高速道岔转辙器区轮轨接触几何特性及接触力学行为特征,研究结果表明:车轮型面演变过程中轮轨接触点对分布状态发生改变,接触点不连续性和跳跃性增大;道岔横向和竖向结构不平顺幅值均发生明显变化,轮载过渡位置延后;车轮磨耗加剧,轮轨接触应力先减小,运营里程达到20万km后开始增大;结构不平顺、轮轨接触应力等指标在列车运营里程达20万km时会发生突变或有极大值。  相似文献   

20.
高速列车车轮磨耗或加工误差引起不同车轮名义滚动圆半径偏差,在道岔区固有结构不平顺作用下,轮径差加剧轮轨系统动力性能。为揭示轮径差对高速道岔区车辆走行性能的影响,以某型高速动车组和客运专线12号道岔为主要研究对象,在综合考虑不同轮径差对岔区轮轨接触几何关系影响的基础上,建立了高速车辆-道岔耦合动力学模型,系统分析了高速车辆存在不同类型和幅值轮径差时通过道岔的稳定性、安全性和平稳性。结果表明,轮径差使轮载过渡位置提前;小轮径车轮位于尖轨侧时,轮对侧滚角增大,道岔固有横向结构不平顺变化剧烈。等值同相轮径差显著恶化车辆过岔走行性能,等值同相轮径差达2mm时,轮轨横向力和脱轨系数快速增大,车辆过岔易发生失稳,平稳性指标达到峰值。建议将同相分布同轴轮径差2 mm或反相分布同轴轮径差3mm作为运用限度,将同轴轮径差1.5mm作为一、二级检修限度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号