首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 507 毫秒
1.
轴重与胎压对半刚性基层沥青路面动力响应影响理论研究   总被引:5,自引:2,他引:3  
采用多目标参数评价方法,分析了车辆轴重和胎压对路面结构动力响应的影响,建立移动荷载下粘弹性层状体系动力学模型。结果发现,路面结构动力响应随着轴重和胎压的增加而增加,轴重和胎压对路面结构的动力响应具有耦合性。0.7 MPa胎压下,轴重达到250 kN时,面层底部弯拉应变和土基顶部竖向压应变均小于永久性路面结构设计指标,可作为校核指标;面层底部水平剪应变远大于层底弯拉应变,可作为半刚性基层沥青路面动态设计的主要设计指标。因此,提高面层与基层之间的粘结强度是提高半刚性基层沥青路面结构使用寿命的关键。  相似文献   

2.
建立沥青路面结构有限元模型,计算沥青路面结构在一天内温度连续变化条件下温度场分布,在此基础上进行温度与移动荷载耦合,分析沥青路面结构在温度-移动荷载耦合作用下的力学响应。结果表明,沥青面层温度场在一天内的变化呈现先减小、后迅速增大、再减小并趋于缓和的趋势,基层以下路面结构层温度几乎不发生变化;在温度-移动荷载耦合作用下,路表最大竖向位移比不考虑温度作用时最大竖向位移增大8.60%,沥青层层底拉应变比不考虑温度作用时层底拉应变增大176.26%;车辆速度和轴重影响沥青路面的力学响应,随着荷载移动速度的增大,路表竖向位移减小、竖向压应力增大,随着轮胎接地压强的增加,路表横向压应力、竖向压应力和纵向压应力都增大。  相似文献   

3.
轴重和胎压对车轮动荷载的影响   总被引:1,自引:0,他引:1  
为研究重型运输车辆对路面作用的动荷载,建立车辆动力学模型,模型中将簧上质量处理为空载簧上质量与装载质量,将轮胎刚度表示为轴重和胎压的函数。研究了轴重和胎压对车辆动荷载的影响。结果发现,车轮动荷载随着轴重和胎压的增加而增加;动载系数随着胎压的增加而增加,但随着轴重的增加而减小;胎压越高,车轮动载随轴重增加速度越快;仅仅采用轴重不足以评价重载高压车辆对路面的破坏作用,在治理超载的同时也应进一步治理超压:空载车辆对路面的冲击作用较大,不能忽视空载车辆对路面的破坏作用;实际高速运行车辆对路面施加较大的附加动荷载,现有《公路沥青路面设计规范》没有考虑附加动荷载是引起路面结构发生早期破坏的原因之一。  相似文献   

4.
为研究行车荷载下不同沥青路面结构的动力响应,验证、完善我国沥青路面设计方法,在两种倒装式和传统半刚性基层沥青路面结构内部埋设沥青应变计、土压力计和垂直大变形应变计等传感元件,以单后轴货车为行车荷载,现场开展了不同轴重、不同行车速度及制动工况下3种路面结构的动力响应测试。以沥青层层底纵向应变与横向应变、路基顶面土压力和过渡层底部竖向压应力与竖向位移为评价指标,分析了不同沥青路面结构的动力响应规律。结果表明:随行车速度增加,各路面结构沥青层层底应变、过渡层竖向压应力与竖向位移均明显减小;从拉应变循环幅值看,半刚性基层结构随车速的变化更敏感;相同轴重和车速下半刚性基层结构路基顶面的压应力远小于倒装式结构,半刚性基层结构荷载扩散能力更优;相同车速下,3种路面结构沥青层层底纵向应变循环幅值和路基顶土压力均随轴重增加而增大,且半刚性基层结构的增幅相对更大,即半刚性基层结构对荷载更敏感,倒装式结构对荷载适应性更强;车辆制动会引起沥青层层底残余应变、纵(横)向应变与应变循环幅值大幅增加,频繁制动易引起路面车辙变形和加速路面沥青层疲劳破坏。  相似文献   

5.
应用有限元软件Abaqus,建立了沥青路面结构动力分析三维有限元模型,应用该模型,分析了温度、层间接触和荷载等因素对沥青路面结构动力响应的影响规律。结果表明:路面结构各层动力响应受温度的影响较为显著,随着温度降低,面层模量增大,面层层底由受压状态变为受拉状态;不同层间界面的层间接触状态对路面结构各层动力响应量的影响程度不同,基层层底拉应力受基层与底基层层间接触条件的影响最为显著;路面结构各动力响应量随轴重的增加均显著提高,各动力响应量峰值与荷载幅值之间近似呈线性增长关系,不同轴型作用的多轮荷载沿深度方向的叠加效应明显。  相似文献   

6.
对市政道路进行减隔振设计,需先研究交通车辆荷载引起的道路振动特性。实测了广州市南大路和番禺大道北辅路在四种车辆和混合车流时的路面振动加速度,并对测试数据进行峰值、频谱、VLz振级分析,研究车辆荷载引起的市政道路振动规律。结果表明:道路振动加速度响应幅值与汽车轴重、行驶速度、道路结构刚度密切相关,随着汽车轴重、车辆行驶速度和道路刚度的增大而增大;汽车荷载激励以竖向振动为主,频率主要在5.0~40.0 Hz之间,能量集中于10.0~20.0Hz范围。  相似文献   

7.
路面沥青混合料层的模量是路面设计的必要参数之一,为定量分析现场沥青层的实际模量特性,提出了一种由现场实测应变数据出发,确定沥青层动态响应模量主曲线的方法,实现了对沥青层现场动态特性的精准表达。首先,实测了柔性基层、半刚性基层2类典型沥青路面不同温度及轴载移动速度下的沥青层动态应变响应;其次,以实测应变波形为基础,分析了不同加载工况下的现场沥青层加载频率特征;最后,基于实测应变值,利用有限元模型反演得到沥青层的动态响应模量,结合沥青层加载频率,建立了沥青层动态响应模量主曲线,并进一步对该主曲线的可靠性进行了验证。研究结果表明:沥青层内部加载频率与轴载移动速度呈正比,且与温度正相关;沥青层现场动态响应模量值随温度升高显著减小,随轴载移动速度增大而增大;结合加载频率及响应模量反演结果,可利用Sigmoidal模型很好地拟合得到沥青层响应模量主曲线;验证结果表明,该主曲线可较为准确地预估其他温度及轴载移动速度下的沥青层响应模量值。所提出的确定沥青层动态响应模量主曲线的方法可为其他试验路应变实测数据的处理提供参考。  相似文献   

8.
为研究重载铁路路桥过渡段在轴重增大、速度提高情况下的变形和动力响应,本文采用有限元数值计算方法,系统总结了重载铁路路桥过渡段路基纵向动力响应规律。分析表明:轴重的变化是影响动应力峰值的决定性因素;列车上桥时,动位移在距桥台0~25m范围内比较集中,变化明显,在该范围内动位移先增大,后减小,在15m左右位置动位移达到最大值。25t轴重、速度100km/h时,桥两侧点的加速度峰值均显著增加;尤其速度提高到120km/h后,影响更甚;上桥侧过渡段路基表面动位移和加速度峰值变化受轴重等因素的影响较下桥侧明显。  相似文献   

9.
重载作用下典型路面结构动态响应数据采集与分析   总被引:1,自引:0,他引:1  
通过在试验路埋设沥青应变仪、温度场传感器等路面响应监测设备,采集了荷载和环境因素作用下不同路面结构沥青层底动态应变响应,分析了动态应变响应特征和应变响应与路面温度、轴载的关系,比较了不同结构的沥青层底最大应变值,构建了路面结构沥青层底应变响应预估模型,揭示了不同路面结构在重载及温度耦合作用下的沥青层底动态应变响应规律。研究结果表明,随着轴载的增加、路面温度的升高,沥青层底最大拉应变增大;不同路面结构沥青层底应变响应变化与其结构组合、交通荷载及环境因素有关,表现出一定的重载和温度敏感性差异;在对比的结构中,组合式基层结构比永久性路面结构具有更小的沥青层底拉应变,传统半刚性基层结构在重载和较高路面温度下具有较大的沥青层底应变响应。  相似文献   

10.
为研究不同温度条件下沥青路面的实际动力响应规律,铺设了3种典型沥青路面试验路,通过落锤式弯沉仪(FWD)开展了温度对路表动态弯沉盆特性的影响作用分析,并通过动态应变传感器获取了不同温度下FWD荷载产生的沥青层底应变响应。研究结果表明:路表动态弯沉盆的各测点弯沉值随径向距离的增加逐渐减小,随荷载水平的增加逐渐增大,随路面温度的增加显著增大;随着温度的提高,路表动态弯沉盆的影响范围显著减小;通过回归分析方法确定沥青层底应变响应的温度修正系数,有助于实现实际温度下的应变响应向标准参照温度的转换。  相似文献   

11.
非均布动荷载作用下沥青路面粘弹性有限元分析   总被引:1,自引:0,他引:1  
不考虑超载情况,为探求非均布动荷载作用下沥青路面的动态响应及破坏规律,采用层状体系理论,建立ANSYS 3-D有限元半刚性基层路面结构模型,施加非均布动荷载,并对粘弹性路面模型各层的动态力学响应及不同车速下路表弯沉的变化进行分析。结果表明,水平应力的交变变化是使路面产生疲劳破坏的主要因素;当重载车辆车速在10~32 km/h之间时,路面的动态弯沉值显著大于静态弯沉值,对路面实际使用寿命的影响非常显著。  相似文献   

12.
基于弹性层状体系理论,借助大型有限元软件ABAQUS建立了新型半刚性路面结构三维有限元模型,引入铺面材料动态模量参数,并编写了UTRACLOAD和DLOAD用户子程序,研究不同车速以及连续变速下的路面结构动力响应,与基于静态参数的路面结构力学响应进行了对比;并分析了特定车速下新型半刚性路面结构与传统路面结构各力学性能指标的差异.结果表明;车速对路面结构各动力响应值的影响较小;车辆在连续变速时,路面结构上中面层受到了更为不利的剪应力作用;相比于静态模量,采用动态模量分析的半刚性基层层底拉应变减小,而沥青混凝土上面层剪应力水平增加;新型半剐性路面结构能有效降低交叉口路段车辙情况发生的几率,提高其抗永久变形能力.  相似文献   

13.
超载作用对高速公路路面结构的影响分析   总被引:1,自引:0,他引:1  
通过轴栽换算,分析了轴栽质量对路面结构的破坏程度,并以广东某高速公路为例,对超载作用下的路面结构进行了受力状况分析.结果表明,车辆轴重超载对路面结构的损坏程度随轴栽的增加呈指数级增大,路表弯沉及各层应力则基本呈线性增大;严重的超载对路面结构的损坏极大,在所测最大轴载作用下,沥青路面路表弯沉值甚至达到设计值的19倍之多,...  相似文献   

14.
沥青路面的动力响应是基于力学的沥青路面设计方法中的主要控制指标,其变化规律也是路面结构性能的评价依据。文中通过在试验路中埋设沥青应变计,采集在移动车辆荷载作用下的动力响应,对乳化沥青冷再生作基层的沥青路面进行了动力响应分析。分析结果表明:(1)对于双联轴车辆,两后轴经过时应变波形会产生相互干涉、叠加。(2)沥青面层底应变随速度增大而降低,随轴重增加而增大。乳化沥青冷再生基层底应变值较小,随速度提高而降低的趋势较缓。(3)乳化沥青冷再生基层底应变均小于沥青面层底应变。这与完全连续状态的弹性层状理论计算结果矛盾,说明两者之间并非完全连续状态。(4)作为底基层的原路面基层的修复状态对乳化沥青冷再生基层底的动力响应有显著影响,使其压应变显著增大,对沥青面层底动力响应影响不显著。  相似文献   

15.
基于加速加载试验的半刚性基层沥青路面动力响应   总被引:2,自引:0,他引:2  
为了了解移动车辆荷载作用下半刚性基层沥青路面结构动力响应规律,修筑足尺试验场,采用置入式应变传感器,检测加速加载设备在车轮荷载作用下的面层底部动力响应,研究了面层底部横向分布以及轴重和温度对路面结构动力响应的影响。结果表明:移动车轮荷载下,面层底部纵向弯拉应变呈拉压应变交变状态,荷载位置仅影响其数值大小;横向弯拉应变比较复杂,胎冠下部呈现拉应变状态,2个轮胎之间及轮胎外侧呈现压应变状态,胎肩位置呈现拉压应变交变状态;面层底部弯拉应变无法充分反映超载车辆对路面的破坏作用;温度对路面结构的动力响应影响显著,30℃、40℃和50℃下沥青路面动力响应分别为常温状态下的3倍、8.9倍和13.3倍。  相似文献   

16.
针对桥梁连续式弹塑性伸缩缝胶结料必须具备良好的拉伸性能、粘结性能及抗破坏性能,开发了新型模具,对开发的新材料和国外同类产品进行拉伸试验对比,分别研究了弹塑性沥青粘结长度、老化时间、温度、拉伸速度对胶结料特性的影响,结果表明:沥青的粘结长度越大,最大伸长率越小,粘结强度先增大后减小,破坏模量越大;老化时间越长,最大伸长率越小,粘结强度越小,破坏模量越小;温度越低,最大伸长率越小,粘结强度越大,破坏模量越大;拉伸速度越快,最大伸长率越小,粘结强度越大,破坏模量越大。  相似文献   

17.
为研究车辆荷载作用下水泥混凝土路面板底脱空区内动水压力、水流速度的分布规律及其影响因素,推导了三维状态下脱空区中截面动水压力、水流速度解析式。应用有限元软件ANSYS和CFX建立了双向流固耦合模型,分析了车辆轴重、车速与脱空尺寸等对动水压力及水流速度的影响。结果表明:固定点的水压力及水流速度随时间成正弦函数变化,且水压力随时间的变化趋势与最大水流速度随时间变化趋势有一定的相位差。沿着脱空区出口的方向,动水压力呈减小趋势,其最大值发生在脱空区尖端;水流速度沿着脱空区出口的方向呈增大趋势,其最大值发生在板边缘;动水压力与水流速度峰值随轴重增大而增大,与轴重近似呈二次方关系;动水压力峰值随车速增大而增大,水压力随车速变化的增幅大约为每10 km/h增加1 kPa,与车速成线性关系,而水流速度峰值受车速影响较小;动水压力与水流速度峰值随脱空区开口量增大而减小,与脱空区开口量成反比关系;当脱空区开口高度扩展到一定程度时(论文模型中为4 mm),动水压力变化幅值较小,此时脱空区继续发展可能归因于水流的冲刷作用。数值模拟结果与理论推导结果基本一致。  相似文献   

18.
《公路》2018,(12)
路基回弹模量是路面结构设计的重要参数。为切实体现路基土回弹模量的应力相关性,克服简化的线弹性当量回弹模量带来的偏差,研究采用综合考虑体应力和八面体剪应力影响的动态回弹模量模型。基于广义胡克定律,从理论上严格推导了该动态回弹模量模型在三维应力状态下的精确一致切线刚度矩阵。通过编写用户自定义材料子程序(UMAT)将动态回弹模量模型移植到ABAQUS中,成功实现了应用动态回弹模量进行结构分析的目标。通过建立应用动态回弹模量本构模型的典型水泥混凝土路基路面结构三维有限元模型,全面研究了载荷对路基路面动力响应的影响,分析了不同行车速度、不同轴重和轴型下路基路面变形特征和应力分布规律。同时确定了车轮与路面共振时的行车速度和重载交通条件下路基工作区深度,研究成果为实际的路基路面设计提供了参考。  相似文献   

19.
考虑路面不平整度激励下车路耦合振动的研究主要是在频域范畴内利用线弹性模型进行。利用有限元方法建立了考虑路面不平整度因素的车路耦合非线性数值模型,分别研究了不同路面不平整度、不同车辆行驶速度、不同车辆载重和不同路基强度等影响因素下的道路结构振动响应情况。考虑道路结构本身的复杂性,每一结构层对振动的响应均会表现不同,为了突出和便于比较影响因素下的变化趋势,故取路表位移响应作为研究对象。研究发现:无论在何种路面条件下行驶,道路位移响应都可以明显地分为3个阶段,暂称为:车辆临近、车辆进行和车辆离去;路面平整度越差,路面结构位移也越大,C级路面下的最大位移量是A级路面的1.31倍;路面响应的最大位移峰值主要受车辆自重影响,而在车辆进行阶段出现的一些小的位移振动峰值主要受路面不平整而引起的随机振动影响,而且这些小的振动峰值随着路面不平整度的变差而增大,随着车辆行驶速度的增大,路面最大位移量变小,但是最大位移量的变化幅度很小,趋势不是很明显;车辆超载后,路面最大位移量增大明显,超载比例达到100%情况下,路面变形增大幅度在50%~109%之间;路基强度降低后,路面最大位移量明显增大,路基强度降低28%后,路面变形增大幅度在15%左右。  相似文献   

20.
利用混合料动态模量参数计算的路面力学响应能更加接近路面对实际交通荷载的响应,能准确反应和评价实际沥青路面的高温性能。而荷载条件、环境温度、试验条件以及沥青混合料自身性质均会对动态模量试验造成影响。本文利用正交试验设计对不同试验温度、沥青用量、试验围压、加载频率、4.75mm筛余、试件厚度的SMA-16改性沥青混合料进行动态模量试验,分析各因素影响规律;运用灰关联熵分析方法,确定各影响因素与沥青混合料动态模量和相位角的关联程度。研究表明:对混合料动态模量指标影响的相对显著程度为:试验温度沥青用量试验围压加载频率4.75mm筛余试件厚度;对相位角指标的相对显著程度为:试验温度沥青用量加载频率4.75mm筛余试验围压试件厚度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号