首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
基于成熟的明线上高速列车气动噪声计算模型和可压缩大涡模型,考虑声学无反射边界条件,利用计算流体力学软件Fluent建立无限长隧道内高速列车气动噪声计算模型,对比分析高速列车在明线上与隧道内运行时的流场组织结构和气动噪声源。结果表明:高速列车在明线上与隧道内运行时具有类似的流场结构和气动噪声源分布规律,但隧道内的流场结构尺度与强度、气动噪声源强度均比明线上大;车速为350 km·h-1时,隧道内头车排障器尖点扰动区的速度幅值约为明线上的1.2倍,列车尾流区长度约为明线上的1.7倍,整车、1位转向架、头车流线型车底及中间车上部的等效声源声功率分别约为明线上的3.2倍、1.6倍、2.7倍和4.2倍;隧道内活塞效应并不是在全频率范围增加等效声源声功率,而是在包含峰值频率较狭窄的频率范围显著地增加等效声源声功率。  相似文献   

2.
建立了高速列车在隧道内和明线上交会的数值计算模型。利用有限体积法求解三维、可压、非定常N-S方程和k-ε两方程湍流模型,通过滑移网格技术实现列车的相对运动。分析了列车在隧道内和明线上以350 km/h等速交会过程中车体表面压力、气动荷载的变化规律。研究发现:列车在隧道内交会时,其车体表面压力比在明线上交会时约增加6 kPa,且车体表面压力的波动幅值是明线上交会时的2倍;交错车体表面的负压值比未交错表面的负压值大1.5kPa;气动力(矩)比在明线上交会时略小;头车、尾车气动阻力的变化规律与单车过隧道时相似,但阻力的变化峰值约是单车过隧道时的2.5倍。  相似文献   

3.
为了研究时速140km/h高速地铁列车以不同运行方式在隧道中运行时的气动效应,采用三维、可压、非定常N-S方程的数值计算方法,对地铁列车由明线驶入隧道及站间运行时产生的气动效应进行数值模拟,分析不同运行方式对高速地铁隧道气动效应的影响。研究结果表明:列车站间运行时,车体表面测点压力峰峰值沿车长方向基本不变;而列车由明线驶入隧道时,车体表面测点压力峰峰值从头车向尾车逐渐降低。2种运行方式下的隧道壁面测点压力峰峰值均在中间风井处达到最小值。并且列车由明线驶入隧道时的最大车体表面和隧道壁面压力峰峰值分别为列车站间运行时的1.37倍与1.49倍。不同列车密封指数下,列车由明线驶入隧道时的车内压力变化均大于列车站间运行时的车内压力变化。因此,地铁列车由明线驶入隧道时的空气动力学效应比站间运行时更加不利。  相似文献   

4.
高速列车气动阻力分布特性研究   总被引:2,自引:0,他引:2  
针对由8辆车组成的CRH3型动车组的实际外形,生成约1.6亿个计算网格,采用大规模并行计算,模拟单列高速列车在明线轨道上以350km/h速度运行时的气流流场,并对列车各组成部分的气动阻力特性进行统计和归类,给出各部件气动阻力对列车总气动阻力的贡献,为高速列车局部减阻优化设计提供参考。  相似文献   

5.
建立了都市快轨列车穿越矩形隧道的三维计算模型,应用不连续网格和动网格来模拟快轨列车穿越隧道的动态过程.采用三维、不可压缩、非定常的N-S方程考虑移动的快轨列车与固定的隧道之间的相对运动.在100 km/h、130 km/h和160 km/h 3种速度工况下,计算研究了列车从进入隧道直至完全驶出隧道的气动阻力变化规律和车体表面压力变化规律.计算结果表明,随着运行速度的增大,列车的气动阻力及车体表面压力变化幅值均增大.  相似文献   

6.
文章以广州某市域快速列车为例,对列车以160 km/h运行在明线和隧道两种场景下的空气阻力进行研究,比较分析了各节车辆及部件的阻力、阻力系数和占比。研究结果表明:市域列车在明线和隧道运行时,头尾车受到的空气阻力最大;在列车各部件中,车体所受空气阻力最大,转向架次之,受电弓最小;隧道运行时列车所受空气阻力达到明线运行时的2倍以上,其中头尾车的空气阻力增幅最大,同时车体、转向架和受电弓的空气阻力也有较大增幅。  相似文献   

7.
在高速列车车身长度保持一定的情况下,不同长度的车头会对列车整体的气动特性(阻力、升力)、列车表面噪声源分布变化、远声场特性(A计权声压级、脉动声压、声场频率等)造成不同的变化。进行三维建模之后,宽频噪声模型采用RNG k-epsilon模型做定常计算,FW-H声学模型采用大涡模拟(LES)模型进行瞬态计算,对时速为350km·h-1,5~13m不同长度车头的高速列车简化模型进行数值模拟,分析气动特性和声场特性。结果表明:高速列车的整车阻力随车头长度增加先呈现减小趋势,当车头长度达到13m时整车阻力开始增大;高速列车远场声压级随车头长度的增加呈现增加态势。综合阻力与远场声压级随车头长度的非线性变化规律,在高速铁路简化模型下最佳车头长度为9m,可保证在减小行车阻力同时控制噪声对环境的污染。研究结论可为高速列车的减阻降噪提供参考。  相似文献   

8.
利用计算流体动力学软件 Star-CD,建立了列车通过隧道时的二维动网格模型,模拟在不同车速下,隧道内活塞风和压力场的动态变化规律,并比较不同外形和运行速度时列车所受到的空气阻力.模拟结果表明:列车通过隧道时的运行速度越大,产生的活塞风风速越大,相对压力越大,列车所受的空气阻力越大;列车通过隧道内某一测量点时,活塞风风速会发生突降,活塞风最大风速在列车尾流中形成;车头到达隧道入口时,最大压力突增,并很快达到最大值,随后逐渐减小;车尾到达隧道入口时,车尾最小压力突降;车身在隧道内时,车尾的最小压力波动较小;流线形列车所受的空气阻力约为钝形列车的0.5~0.7倍.  相似文献   

9.
文章采用流体力学数值计算软件FLUENT对我国某新型动车组的空气动力学性能进行了数值仿真.研究了不同速度下,两列高速列车明线同向并行运动时的气动阻力,并与单车明线的气动阻力进行了对比.结果表明,双车产生的气动阻力均大于单车时情况,随着速度的提高,气动阻力增幅加大.  相似文献   

10.
基于风压载荷空气动力学控制方程,利用计算流体力学软件FLUENT,分析高速列车在不同线间距隧道内,以不同速度级等速交会时的车体表面风压和受到的气动力;将隧道内交会时受到的气动力以时程荷载的形式施加到车辆动力学模型中,分析其对各项车辆动力学性能的影响规律,并进行安全性和平稳性指标分析。结果表明:列车在隧道内等速交会时,头车所受的气动阻力、升力、横向力最大;高速列车表面所受的风压极值与速度的2.2~2.3次方成正比,所受的气动阻力、升力、横向力与速度的1.8~2.4次方成正比;隧道内高速交会对车辆安全性指标影响不大,仅在交会瞬间产生较大的车体横向振动,当运行速度达到400km·h^-1时各项安全性、舒适性指标均满足限值要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号