首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
以佛山市某超深工作井基坑为依托,采用数值模拟方法,分析不同基坑尺寸对地下连续墙水平位移、弯矩、墙后地表沉降、坑底隆起的影响,并通过现场监测结果验证了数值分析的可靠度。基于此,进一步研究了尺寸效应对圆形基坑拱效应特点的影响。研究表明:地下连续墙水平位移、弯矩、墙后地表沉降、坑底隆起均表现随基坑尺寸增大而增大的整体趋势,当基坑直径小于65.9 m时,对各参数影响较大,反之较小。且当基坑直径约为0.6~0.9倍基坑开挖深度时,围护结构环向应力大于径向应力,具有较好的"拱效应";当基坑直径超出该范围,环向应力小于径向应力,"拱效应"减弱。通过对某超深圆形基坑尺寸的研究,以期为相关工程提供参考。  相似文献   

2.
以昌景黄高铁瑶里隧道暗挖段DK90+550~DK90+610作为研究断面,建立三维数值模型,研究隧道双侧壁导坑法施工过程中隧道的变形和支护结构的内力,深入分析了双侧壁导坑法临时竖撑曲率半径和初期支护钢拱架间距的影响。研究表明,隧道施工过程中隧道拱顶处围岩竖向位移较大,隧道拱腰处围岩水平位移较大。当开挖左侧导坑中间土体和拆除临时支撑时,拱腰水平位移会显著增大。随着双侧壁导坑法临时竖撑曲率半径的增大,围岩的竖向位移逐渐减小,水平位移逐渐增大,初期支护钢拱架的应力逐渐减小,且临时竖撑曲率半径对围岩竖向位移的影响更加显著。围岩竖向位移和水平位移均随着初期支护钢拱架间距的增大而增大,且钢拱架的变化对拱顶围岩竖向位移的影响更为显著。  相似文献   

3.
结合内蒙某实际桥梁参数,利用有限元软件建立了考虑土与波纹钢板相互作用的二维平面应变模型,通过对模型施加强制位移,计算分析了10种不同拱脚变位工况下结构的受力和变形的变化规律.拱脚发生水平位移时对结构受力性能的影响比拱脚发生竖向沉降时大,拱脚水平位移造成结构位移增大,拱圈应力由受压转为受拉;拱脚不均匀沉降对结构的影响较均匀沉降大;特别是拱脚同时发生不对称的竖向和水平位移使结构位移显著增加,拱圈两侧拉压应力数值都明显增大.拱脚变位还会造成拱脚反力变化,特别是不均匀拱脚变位时会出现反力方向变号.尽管覆土波纹钢板拱桥变形适应能力较强,但在设计和施工中也应采取措施,避免和减小基础的变位.  相似文献   

4.
以水平层状的砂泥岩互层围岩条件下遂德高速公路中鸡公岭隧道为工程背景,采用有限元分析软件,模拟分析在不同偏压条件下三台阶开挖施工方法中隧道围岩塑性区分布情况及初衬收敛位移、应力场变化情况。结果表明:中部施工对隧道稳定性影响最大,随着偏压角度的增大,塑性区由拱腰向拱脚及拱肩处发展。初衬拱顶及仰拱竖向位移随着施工步序的进行而增大,总体收敛位移及竖向位移最大值均发生在砂泥岩互层交界处。由于施工荷载作用,整个拱圈初衬的初始应力场被破坏,其中隧道中部施工对应力场重分布的作用更明显。随着偏压角度的增大,左右两侧隧道小主应力最大值绝对值的增量均逐渐变大,在偏压角度大于50°后,左侧隧道小主应力最大值绝对值超过右侧隧道的对应值。  相似文献   

5.
针对岩石真三轴试验中存在的端部摩擦效应,运用Abaqus,模拟分析了传统式和互扣式两种端部垫块加载方式下端部摩擦对真三轴试验结果的影响。计算结果表明:两种加载方式下都产生了虚假中间主应力效应,且端部摩擦效应对岩石试样强度和变形的影响随着摩擦系数的增大而增大。花岗岩在两种加载方式下不同摩擦系数的一系列试验证实了该结论。  相似文献   

6.
基于透明土技术的桩后土拱效应特征分析   总被引:3,自引:0,他引:3  
为研究圆桩后土拱效应的特征及演化过程,从细观角度开展了基于透明土技术的桩土相互作用试验研究. 首先开展了透明土配比试验,获取物理力学性质适宜的土体;其次设计了试验系统并得到透明土与桩相互作用的散斑场图像;最后通过particle image velocimetry (PIV)技术分析得到位移矢量图,进一步分析得到透明土位移变化规律. 研究结果表明:通过位移矢量图可以得到圆桩作用下土体运动趋势及土颗粒的位移特征,并可进一步解译得到位移等值线构成的拱形结构,即桩后土拱结构,呈现出抛物线形,其范围与桩径、桩间距及深度有相关性;桩径越大,土拱区域越大,桩径30 mm时,土拱高达100 mm,桩土相互作用的影响范围越大;桩间距越大拱高最大值越大,桩间距80 mm时,土拱高也达100 mm;不同深度下土拱拱高在变化趋势上有较大的相似性,深度越深,土拱的最大拱高越小,深度50 mm时,拱高60 mm;通过拟合公式得到,土拱最大拱高沿桩身方向从桩顶至桩底呈逐渐减小趋势,同时随土体位移增加,表现出先增大,后趋于一稳定值的特征,其稳定值的大小与桩径呈正相关、桩间距呈正相关及深度呈负相关.   相似文献   

7.
大跨度钢管混凝土拱桥的地震反应性能   总被引:39,自引:2,他引:39  
针对跨径为(76+360+76)m某大跨度钢管混凝土系杆拱桥的特点,详细介绍了其分析模型的建立方法,动力特性特点及共在地震动作用下响应,并深入讨论了不同行波波速对该拱桥地震反应性能的影响,分析表明,主拱肋跨中截面的地震反应内力较小,而拱脚截面l/4~3l/8等截面的地震反应内力则相对较大,行波效应对拱桥的地震反应有较大的影响,一般来说考虑行波效应后其竖向位移,轴力均增大,而横向位移减少。  相似文献   

8.
不同的开挖进尺会引起隧道相应的围岩位移变化,围岩位移超过容许值将会影响隧道的安全性。以长茂山双车道浅埋隧道为例,采用有限元软件ABAQUS对台阶法不同开挖进尺条件下的隧道施工进行三维数值模拟,从位移及应力两方面来分析台阶法不同开挖进尺的围岩变化规律。研究表明:围岩位移变化主要在拱顶及拱顶附近且侧拱两侧位移曲线呈对称分布;围岩的最大位移变形量随开挖循环进尺增大而相应增大,当开挖进尺增大到6 m后,围岩发生最大位移增长滞缓;围岩竖向位移和拱顶应力随开挖进尺变化的规律可以采用Logistic增长函数进行拟合;提出了循环开挖进尺为4 m的合理施工方法。  相似文献   

9.
马莉 《山西交通科技》2015,(1):41-42,45
以现场试验数据为基础,合理考虑"拱效应"原理,试验结果表明:高填方涵洞顶部土压力随填土高度增大呈非线性增大规律,运用回归分析法提出了涵洞顶部竖向土压力计算公式,使高填方涵洞结构设计更为经济合理。  相似文献   

10.
采用数值模拟方法, 在不同震级人工地震波作用下, 研究了具有近距离平行地裂缝的地铁隧道的加速度、位移和内力特征, 计算了地裂缝的影响区域、围岩动土压力变化规律和隧道与围岩接触动土压力变化规律。研究结果表明: 在地表距隧道水平距离约25~50m范围内加速度响应存在一个附加放大区域; 当输入地震动强度较小时(50年超越概率为63%), 地铁隧道拱顶和拱底处相对水平位移都较小(约为0.39mm), 但随着输入地震动强度的增大(50年超越概率为2%), 拱顶和拱底的相对水平位移均逐渐增大, 最终增大至1.53mm; 在地震动作用下, 隧道结构的左、右拱肩和拱脚处的轴力都较大, 其中右拱脚处的轴力最大, 为1 926kN; 隧道结构的左、右拱腰处的弯矩和剪力都较大, 其中最大弯矩与最大剪力在右拱腰处, 分别为78.54kN·m与1 830kN; 随着地震动强度的增大, 隧道结构的内力逐渐增强; 地裂缝附近的动土压力较大, 并向两侧逐渐减小; 在中震作用下隧道拱顶处, 地裂缝上盘影响宽度为25m, 下盘影响宽度为20m, 在拱底处, 地裂缝上盘影响宽度为26m, 下盘影响宽度为22m;在大震作用下, 地裂缝上、下盘影响宽度较中震时增大约35%;地裂缝附近的隧道拱顶和拱底的动土压力变化规律与无地裂缝时基本一致, 但隧道结构附近的动土压力较大, 其最大值为138kPa; 在地震动作用下, 隧道结构拱腰处的接触动土压力增量较大, 右拱腰处即靠近地裂缝一侧最大, 增量为45.27%, 拱顶次之, 增量为13.41%, 拱底最小, 增量为6.86%。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号