首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In 2014, highway vehicles accounted for 72.8% of all Greenhouse Gases emissions from transportation in Europe. In the United States (US), emissions follow a similar trend. Although many initiatives try to mitigate emissions by focusing on traffic operations, little is known about the relationship between emissions and road design. It is feasible that some designs may increase average flow speed and reduce accelerations, consequently minimizing emissions.This study aims to evaluate the impact of road horizontal alignment on CO2 emissions produced by passenger cars using a new methodology based on naturalistic data collection. Individual continuous speed profiles were collected from actual drivers along eleven two-lane rural road sections that were divided into 29 homogeneous road segments. The CO2 emission rate for each homogeneous road segment was estimated as the average of CO2 emission rates of all vehicles driving, estimated by applying the VT-Micro model.The analysis concluded that CO2 emission rates increase with the Curvature Change Rate. Smooth road segments normally allowed drivers to reach higher speeds and maintain them with fewer accelerations. Additionally, smother segments required less time to cover the same distance, so emissions per length were lower. It was also observed that low mean speeds produce high CO2 emission rates and they increase even more on roads with high speed dispersions.Based on this data, several regression models were calibrated for different vehicle types to estimate CO2 emissions on a specific road segment. These results could be used to incorporate sustainability principles to highway geometric design.  相似文献   

2.
This research developed an eco-driving feedback system based on a driving simulator to support eco-driving training. This support system could provide both dynamic and static feedback to improve drivers’ eco-driving behavior. In the process of driving, drivers could get voice prompts (e.g., please avoid accelerating rapidly) once non-eco-driving behavior appeared, and also could see the real-time CO2 emissions curves. After driving, drivers could receive an eco-driving evaluation report including their fuel consumption rank, potential of fuel saving and driving advice corresponding to their driving behavior. In this support system, five items of non-eco-driving behavior (i.e., quick accelerate, rapid decelerate, engine revolutions at a high level, too fast or unstable speed on freeways and idling for a longer time) were defined and could be detected. To validate this support system’s effectiveness in reducing fuel consumption and emissions, 22 participants were recruited and three driving tests were conducted, first without using the support system, then static feedback and then dynamic feedback utilized respectively. A reduction of 5.37% for CO2 emissions and 5.45% for fuel consumption was obtained. The results indicated that the developed eco-driving support system was an effective training tool to improve drivers’ eco-driving behavior in reducing emissions and fuel consumption.  相似文献   

3.
Greenhouse gas emissions from international shipping are an increasing concern. The paper evaluates whether vessel speed reduction can be a potentially cost-effective CO2 mitigation option for ships calling on US ports. By applying a profit-maximizing equation to estimate route-specific, economically-efficient speeds, we explore policy impacts of a fuel tax and a speed reduction mandate on CO2 emissions. The profit-maximizing function incorporates opportunity costs associated with speed reduction that go unobserved in more traditional marginal abatement cost analyses. We find that a fuel tax of about $150/ton fuel will lead to average speed-related CO2 reductions of about 20–30%. Moreover, a speed reduction mandate targeted to achieve 20% CO2 reduction in the container fleet costs between $30 and $200 per ton CO2 abated, depending on how the fleet responds to a speed reduction mandate.  相似文献   

4.
This article highlights eco-driving as an available policy option to reduce climate altering GHG emissions. Recognizing the need to reduce the environmental impact of its fleet operations, the City of Calgary is a leader in developing programs and policies that aim to reduce GHG emissions and associated pollutants resulting from the use of fossil fuels. Among local action taken against climate change, the City sought to quantify CO2 emissions reductions from their municipal fleet as a result of eco-driver training, with a specific focus on engine idling. Fifteen drivers from the Development & Building Approvals Business Unit had in-vehicle monitoring technology (CarChips®) installed into their vehicles as part of a three-phase research process. The results show that gasoline and hybrid vehicles decreased average idling between 4% and 10% per vehicle per day, leading to an average emissions decrease of 1.7 kg of CO2 per vehicle per day.  相似文献   

5.
Τhis study demonstrates the combination of a microscopic traffic simulator (AIMSUN) with an instantaneous emissions model (AVL CRUISE) to investigate the impact of traffic congestion on fuel consumption on an urban arterial road. The micro traffic model was enhanced by an improved car-following law according to Morello et al. (2014) and was calibrated to replicate measured driving patterns over an urban corridor in Turin, Italy, operating under adaptive urban traffic control (UTC). The method was implemented to study the impact of congestion on fuel consumption for the category of Euro 5 diesel <1.4 l passenger cars. Free flow and congested conditions led to respective consumption differences of −25.8% and 20.9% over normal traffic. COPERT 5 rather well predicted the impact of congestion but resulted to a much lower relative reduction in free flow conditions. Start and stop system was estimated to reduce consumption by 6% and 11.9% under normal and congested conditions, respectively. Using the same modelling approach, UTC was found to have a positive impact on CO2 emissions of 8.1% and 4.5% for normal and congested conditions, respectively, considering the Turin vehicle fleet mix for the year 2013. Overall, the study demonstrates that the combination of detailed and validated micro traffic and emissions models offers a powerful combination to study traffic and powertrain impacts on greenhouse gas and fuel consumption of on road vehicles over a city network.  相似文献   

6.
In 2016, the International Maritime Organization (IMO) decided on global regulations to reduce sulphur emissions to air from maritime shipping starting 2020. The regulation implies that ships can continue to use residual fuels with a high sulphur content, such as heavy fuel oil (HFO), if they employ scrubbers to desulphurise the exhaust gases. Alternatively, they can use fuels with less than 0.5% sulphur, such as desulphurised HFO, distillates (diesel) or liquefied natural gas (LNG). The options of lighter fuels and desulphurisation entail costs, including higher energy consumption at refineries, and the present study identifies and compares compliance options as a function of ship type and operational patterns.The results indicate distillates as an attractive option for smaller vessels, while scrubbers will be an attractive option for larger vessels. For all vessels, apart from the largest fuel consumers, residual fuels desulphurised to less than 0.5% sulphur are also a competing abatement option. Moreover, we analyse the interaction between global SOX reductions and CO2 (and fuel consumption), and the results indicate that the higher fuel cost for distillates will motivate shippers to lower speeds, which will offset the increased CO2 emissions at the refineries. Scrubbers, in contrast, will raise speeds and CO2 emissions.  相似文献   

7.
The European Union (EU) recently adopted CO2 emissions mandates for new passenger cars, requiring steady reductions to 95 gCO2/km in 2021. We use a multi-sector computable general equilibrium (CGE) model, which includes a private transportation sector with an empirically-based parameterization of the relationship between income growth and demand for vehicle miles traveled. The model also includes representation of fleet turnover, and opportunities for fuel use and emissions abatement, including representation of electric vehicles. We analyze the impact of the mandates on oil demand, CO2 emissions, and economic welfare, and compare the results to an emission trading scenario that achieves identical emissions reductions. We find that vehicle emission standards reduce CO2 emissions from transportation by about 50 MtCO2 and lower the oil expenditures by about €6 billion, but at a net added cost of €12 billion in 2020. Tightening CO2 standards further after 2021 would cost the EU economy an additional €24–63 billion in 2025, compared with an emission trading system that achieves the same economy-wide CO2 reduction. We offer a discussion of the design features for incorporating transport into the emission trading system.  相似文献   

8.
This paper evaluates the impacts on energy consumption and carbon dioxide (CO2) emissions from the introduction of electric vehicles into a smart grid, as a case study. The AVL Cruise software was used to simulate two vehicles, one electric and the other engine-powered, both operating under the New European Driving Cycle (NEDC), in order to calculate carbon dioxide (CO2) emissions, fuel consumption and energy efficiency. Available carbon dioxide data from electric power generation in Brazil were used for comparison with the simulated results. In addition, scenarios of gradual introduction of electric vehicles in a taxi fleet operating with a smart grid system in Sete Lagoas city, MG, Brazil, were made to evaluate their impacts. The results demonstrate that CO2 emissions from the electric vehicle fleet can be from 10 to 26 times lower than that of the engine-powered vehicle fleet. In addition, the scenarios indicate that even with high factors of CO2 emissions from energy generation, significant reductions of annual emissions are obtained with the introduction of electric vehicles in the fleet.  相似文献   

9.
The accelerated diffusion of cleaner vehicles to reduce CO2 emissions in transport can be explicitly integrated in emission trading designs by making use of cross-sectoral energy efficiency investment opportunities that are found in data on CO2 emissions during the production and the use of cars and trucks. We therefore elaborate the introduction of tradable certificates that are allocated or grandfathered to manufacturers that provide vehicles (and other durable goods) that enable their customers to reduce their own CO2 emissions. This certificate is an allowance for each tonne CO2 avoided. Manufacturers can then sell these certificates on the emission market and use the revenues to lower the price of their cleanest vehicles. This mechanism should partially overcome the price difference with less efficient cars. In a simulation, we found that the introduction of the certificate in tradable permit systems can lead to very significant reductions of CO2 emissions. The simulations indicate that CO2 emissions resulting from the car fleet can be reduced by 25 to 38% over a period of 15 years (starting in 1999). For the truck fleet, the reduction potential is more limited but still very interesting.  相似文献   

10.
In this study, the costs involved in the use of petrol, diesel, natural gas, biogas, and methanol (produced from natural gas and biomass) in cars and heavy trucks are compared. The cost includes fuel cost, extra capital cost for vehicles using alternative fuels, and the environmental cost of VOC, NOx, particulate and CO2 emission based on actual 1996 and estimated 2015 emission factors. The costs have been calculated separately for rural, urban and city-centre traffic. A complete macroeconomic assessment of the effect of introducing alternative fuels is not, however, included in the study. The study shows that no alternative fuel can compete with petrol and diesel in rural traffic when the economic valuation of CO2 emission is taken as current Swedish CO2 taxes ($200/tonne C). In cities with a natural gas network, natural gas is the fuel with the lowest cost for both cars and heavy trucks, based on 1996 emission factors. Methanol from natural gas and biogas from waste products can also compete with diesel in urban traffic. With predicted improvements in technology and subsequent emission reductions, no alternative fuel can compete with petrol in any of the traffic situations studied by 2015, and only in city-centre traffic will alternative fuels be less costly than diesel in heavy vehicles. Of the biomass-based fuels studied, low-cost biogas from waste products is the most competitive one and is, already at current CO2 taxes, the fuel with lowest cost for heavy trucks in urban traffic in areas where natural gas networks do not exist. To enable the more widespread use of biomass-based fuels, i.e. using feedstocks such as energy crops or logging residues that are available in larger amounts, the economic valuation of CO2 emission has to be 2–2.5 times higher than current Swedish CO2 tax level.  相似文献   

11.
This study quantifies the energy and environmental impact of a selection of traffic calming measures using a combination of second-by-second floating-car global positioning system data and microscopic energy and emission models. It finds that traffic calming may result in negative impacts on vehicle fuel consumption and emission rates if drivers exert aggressive acceleration levels to speed up to their journeys. Consequently by eliminating sharp acceleration maneuvers significant savings in vehicle fuel consumption and emission rates are achievable through driver education. The study also demonstrates that high emitting vehicles produce CO emissions that are up to 25 times higher than normal vehicle emission levels while low emitting vehicles produce emissions that are 15–35% of normal vehicles. The relative increases in vehicle fuel consumption and emission levels associated with the sample traffic calming measures are consistent and similar for normal, low, and high emitting vehicles.  相似文献   

12.
Driving cycles are used to assess vehicle fuel consumption and pollutant emissions. The premise in this article is that suburban road-work vehicles and airport vehicles operate under particular conditions that are not taken into account by conventional driving cycles. Thus, experimental data were acquired from two pickup trucks representing both vehicle fleets that were equipped with a data logger. Based on experimental data, the suburban road-work vehicle showed a mixed driving behavior of high and low speed with occasional long periods of idling. In the airport environment, however, the driving conditions were restricted to airport grounds but were characterized by many accelerations and few high speeds. Based on these measurements, microtrips were defined and two driving cycles proposed. Fuel consumption and pollutant emissions were then measured for both cycles and compared to the FTP-75 and HWFCT cycles, which revealed a major difference: at least a 31% increase in fuel consumption over FTP-75. This increased fuel consumption translates into higher pollutant emissions. When CO2 equivalent emissions are taken into account, the proposed cycles show an increase of at least 31% over FTP-75 and illustrate the importance of quantifying fleet speed patterns to assess CO2 equivalent emissions so that the fleet manager can determine potential gains in energy or increased pollutant emissions.  相似文献   

13.
Eco-Driving, a driver behaviour-based method, has featured in a number of national policy documents as part of CO2 emission reduction or climate change strategies. This investigation comprises a detailed assessment of acceleration and deceleration in Eco-Driving Vehicles at different penetration levels in the vehicle fleet, under varying traffic composition and volume. The impacts of Eco-Driving on network-wide traffic and environmental performance at a number of speed-restricted road networks (30?km/h) is quantified using microsimulation. The results show that increasing levels of Eco-Driving in certain road networks result in significant environmental and traffic congestion detriments at the road network level in the presence of heavy traffic. Increases in CO2 emissions of up to 18% were found. However, with the addition of vehicle-to-vehicle or vehicle-to-infrastructure communication technology which facilitates dynamic driving control on speed and acceleration/deceleration in vehicles, improvements in CO2 emissions and traffic congestion are possible using Eco-Driving.  相似文献   

14.
Increasingly strict emissions standards are providing a major impetus to vehicle manufactures for developing advanced powertrain and after-treatment systems that can significantly reduce real driving emissions. The knowledge of the gaseous emissions from diesel engines under steady-state operation and under transient operation provides substantial information to analyze real driving emissions of diesel vehicles. While there are noteworthy advances in the assessment of road vehicle emissions from real driving and laboratory measurements, detailed information on real driving gaseous emissions are required in order to predict effectively the real-time gaseous emissions from a diesel vehicle under realistic driving conditions. In this work, experiments were performed to characterize the behavior of NOx, unburned HC, CO, and CO2 emitted from light-duty diesel vehicles that comply with Euro 6 emissions standards. The driving route fully reflected various real-world driving conditions such as urban, rural, and highway. The real-time emission measurements were conducted with a Portable Emissions Measurement System (PEMS) including a Global Positioning System (GPS). To investigate the gaseous emission characteristics, authors determined the road load coefficients of vehicle specific power (VSP) and regression coefficient between fuel use rate and VSP. Furthermore, this work revealed the correlation between the rates of average fuel use and each gaseous emission.  相似文献   

15.
With increasing attention being paid to greenhouse gas (GHG) emissions, the transportation industry has become an important focus of approaches to reduce GHG emissions, especially carbon dioxide equivalent (CO2e) emissions. In this competitive industry, of course, any new emissions reduction technique must be economically attractive and contribute to good operational performance. In this paper, a continuous-variable feedback control algorithm called GEET (Greening via Energy and Emissions in Transportation) is developed; customer deliveries are assigned to a fleet of vehicles with the objective function of Just-in-Time (JIT) delivery and fuel performance metrics akin to the vehicle routing problem with soft time windows (VRPSTW). GEET simultaneously determines vehicle routing and sets cruising speeds that can be either fixed for the entire trip or varied dynamically based on anticipated performance. Dynamic models for controlling vehicle cruising speed and departure times are proposed, and the impact of cruising speed on JIT performance and fuel performance are evaluated. Allowing GEET to vary cruising speed is found to produce an average of 12.0–16.0% better performance in fuel cost, and −36.0% to +16.0% discrepancy in the overall transportation cost as compared to the Adaptive Large Neighborhood Search (ALNS) heuristic for a set of benchmark problems. GEET offers the advantage of extremely fast computational times, which is a substantial strength, especially in a dynamic transportation environment.  相似文献   

16.
Road freight transport continues to grow in Germany and generates 6% of the country’s CO2 emissions. In logistics, many decisions influence the energy efficiency of trucks, but causalities are not well understood. Little work has been done on quantifying the potential for further CO2 reduction and the effect of specific activities, such as introducing computer assisted scheduling systems to trucking firms. A survey was survey out and linked fuel consumption to transport performance parameters in 50 German haulage companies during 2003. Emission efficiency ranged from 0.8 tonne-km to 26 tonne-km for 1 kg CO2 emissions. The results show potential for improvements given a low level of vehicle usage and load factor levels, scarce use of lightweight vehicle design, poorly selected vehicles and a high proportion of empty runs. IT-based scheduling systems with telematic application for data communication, positioning and navigation show positive effects on efficiency. Fuel use and transport performance was measured before and after the introduction of these systems.  相似文献   

17.
In-use micro-scale fuel use and emission rates were measured for eight cement mixer trucks using a portable emission measurement system. Each vehicle was tested on petroleum diesel and B20 biodiesel. Average fuel use and emission rates increase monotonically versus engine manifold absolute pressure. A typical duty cycle includes loading at a cement plant, transit while loaded from the cement plant to work site, creeping in a queue of vehicles at the worksite, unloading, and transit without load from the site to the plant. For B20 versus petroleum diesel, there is no significant change in the rate of fuel use, CO2 emissions, and NO emissions, and significant decreases in emissions for CO, hydrocarbons, and particulate matter. For loaded versus unloaded onroad travel, fuel use and CO2 emissions rates are approximately 60% higher and the rates for other pollutants are approximately 30–50% higher. A substantial portion of cycle emissions occurred at the work site. Inter-vehicle and intra-cycle variability are also quantified using the micro-scale methodology.  相似文献   

18.
Policy options to reduce passenger transport emissions in Europe are simulated with the EUCARS model. The EUCARS welfare analysis includes changes in consumer surplus, congestion and tax revenues. Simulations also address consumer myopia, i.e., the underestimation of fuel costs by car buyers. The best policy mix to reduce CO2 consists of fuel taxes that are combined with differentiated purchase taxes to correct for the assumed myopia. This combination could reduce CO2 emissions of over 25% without reducing contemporaneous well-being. For the reduction of conventional emissions, an equivalent best mix includes an emissions-based kilometre tax combined with a purchase feebate. This mix allows a 60% reduction in toxic emissions without any noticeable welfare reduction. The overall superiority of these two mixes compared to alternative choices is higher when the evaluation includes a broad group of externalities, a premium on public funds, and positive feedbacks across emissions categories. Local traffic management measures are important zero-cost complements for an overall emissions strategy.  相似文献   

19.
In order to reduce CO2 emissions from motorised transport, the Taiwanese government implemented an idling policy for vehicles in 2012. This paper applies a contingent valuation framework based on stated preference questions to calculate a reasonable fine for idling vehicles based on drivers’ preferences in Taiwan. Drivers were surveyed at urban roadsides to determine the amount of money they would prefer to pay for idling in excess of the 3 min currently allowed by law. The results obtained from our spike model analysis showed that drivers would prefer to pay a fine of 1720 NTD (approximately USD 57).  相似文献   

20.
Today, driver support tools intended to increase traffic safety, provide the driver with convenient information and guidance, or save time are becoming more common. However, few systems have the primary aim of reducing the environmental effects of driving. The aim of this project was to estimate the potential for reducing fuel consumption and thus the emission of CO2 through a navigation system where optimization of route choice is based on the lowest total fuel consumption (instead of the traditional shortest time or distance), further the supplementary effect if such navigation support could take into account real-time information about traffic disturbance events from probe vehicles running in the street network. The analysis was based on a large database of real traffic driving patterns connected to the street network in the city of Lund, Sweden. Based on 15 437 cases, the fuel consumption factor for 22 street classes, at peak and off-peak hours, was estimated for three types of cars using two mechanistic emission models. Each segment in the street network was, on a digitized map, attributed an average fuel consumption for peak and off-peak hours based on its street class and traffic flow conditions. To evaluate the potential of a fuel-saving navigation system the routes of 109 real journeys longer than 5 min were extracted from the database. Using Esri’s external program ArcGIS, Arcview and the external module Network Analysis, the most fuel-economic route was extracted and compared with the original route, as well as routes extracted from criterions concerning shortest time and shortest distance. The potential for further benefit when the system employed real-time data concerning the traffic situation through 120 virtual probe vehicles running in the street network was also examined. It was found that for 46% of trips in Lund the drivers spontaneous choice of route was not the most fuel-efficient. These trips could save, on average, 8.2% fuel by using a fuel-optimized navigation system. This corresponds to a 4% fuel reduction for all journeys in Lund. Concerning the potential for real-time information from probe vehicles, it was found that the frequency of disturbed segments in Lund was very low, and thus so was the potential fuel-saving. However, a methodology is presented that structures the steps required in analyzing such a system. It is concluded that real-time traffic information has the potential for fuel-saving in more congested areas if a sufficiently large proportion of the disturbance events can be identified and reported in real-time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号