首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Energy and emissions impacts of a freeway-based dynamic eco-driving system   总被引:1,自引:0,他引:1  
Surface transportation consumes a vast quantity of fuel and accounts for about a third of the US CO2 emissions. In addition to the use of more fuel-efficient vehicles and carbon-neutral alternative fuels, fuel consumption and CO2 emissions can be lowered through a variety of strategies that reduce congestion, smooth traffic flow, and reduce excessive vehicle speeds. Eco-driving is one such strategy. It typically consists of changing a person’s driving behavior by providing general static advice to the driver (e.g. do not accelerate too quickly, reduce speeds, etc.). In this study, we investigate the concept of dynamic eco-driving, where advice is given in real-time to drivers changing traffic conditions in the vehicle’s vicinity. This dynamic strategy takes advantage of real-time traffic sensing and telematics, allowing for a traffic management system to monitor traffic speed, density, and flow, and then communicates advice in real-time back to the vehicles. By providing dynamic advice to drivers, approximately 10–20% in fuel savings and lower CO2 emissions are possible without a significant increase in travel time. Based on simulations, it was found that in general, higher percentage reductions in fuel consumption and CO2 emission occur during severe compared to less congested scenarios. Real-world experiments have also been carried out, showing similar reductions but to a slightly smaller degree.  相似文献   

2.
This paper compares the outcomes of policies that target vehicle holdings with those that target vehicle usage using data from the US Consumer Expenditure Survey. Results show that a higher price of gasoline shifts vehicle holdings towards more fuel efficient vehicles and reduces the annual demand for miles, whereas imposing a fee on vehicles or a feebate program only shifts vehicle holdings towards more fuel efficient vehicles and has little to no impact on the demand for miles. While it is relatively expensive to reduce CO2 emission through incentive-based policies, achieving any abatement level is more expensive through imposing fees on vehicles than gasoline taxes. In addition, the maximum amount of abatement attainable by a feebate program is relatively small and the same amount could be achieved by imposing a $0.73 gasoline tax per gallon.  相似文献   

3.
The paper presents an algorithm for matching individual vehicles measured at a freeway detector with the vehicles’ corresponding measurements taken earlier at another detector located upstream. Although this algorithm is potentially compatible with many vehicle detector technologies, the paper illustrates the method using existing dual-loop detectors to measure vehicle lengths. This detector technology has seen widespread deployment for velocity measurement. Since the detectors were not developed to measure vehicle length, these measurements can include significant errors. To overcome this problem, the algorithm exploits drivers’ tendencies to retain their positions within dense platoons. The otherwise complicated task of vehicle reidentification is carried out by matching these platoons rather than individual vehicles. Of course once a vehicle has been matched across neighboring detector stations, the difference in its arrival time at each station defines the vehicle’s travel time on the intervening segment.Findings from an application of the algorithm over a 1/3 mile long segment are presented herein and they indicate that a sufficient number of vehicles can be matched for the purpose of traffic surveillance. As such, the algorithm extracts travel time data without requiring the deployment of new detector technologies. In addition to the immediate impacts on traffic monitoring, the work provides a means to quantify the potential benefits of emerging detector technologies that promise to extract more detailed information from individual vehicles.  相似文献   

4.
One interaction between environmental and safety goals in transport is found within the vehicle fleet where fuel economy and secondary safety performance of individual vehicles impose conflicting requirements on vehicle mass from an individual’s perspective. Fleet characteristics influence the relationship between the environmental and safety outcomes of the fleet; the topic of this paper. Cross-sectional analysis of mass within the British fleet is used to estimate the partial effects of mass on the fuel consumption and secondary safety performance of vehicles. The results confirmed that fuel consumption increases as mass increases and is different for different combinations of fuel and transmission types. Additionally, increasing vehicle mass generally decreases the risk of injury to the driver of a given vehicle in the event of a crash. However, this relationship depends on the characteristics of the vehicle fleet, and in particular, is affected by changes in mass distribution within the fleet. We confirm that there is generally a trade-off in vehicle design between fuel economy and secondary safety performance imposed by mass. Cross-comparison of makes and models by model-specific effects reveal cases where this trade-off exists in other aspects of design. Although it is shown that mass imposes a trade-off in vehicle design between safety and fuel use, this does not necessarily mean that it imposes a trade-off between safety and environmental goals in the vehicle fleet as a whole because the secondary safety performance of a vehicle depends on both its own mass and the mass of the other vehicles with which it collides.  相似文献   

5.
This paper assesses the costs and effectiveness of several energy policies for light-duty motor vehicles in the United States, using a version of the National Energy Modeling System. The policies addressed are higher fuel taxes, tighter vehicle efficiency standards, and financial subsidies and penalties for the purchase of high- and low-efficiency vehicles (feebates). I find that tightening fuel-efficiency standards beyond those currently mandated through 2016, or imposing feebates designed to accomplish similar changes, can achieve by 2030 reductions in energy use by all light-duty passenger vehicles of 7.1–8.4%. A stronger feebate policy has somewhat greater effects, but at a significantly higher unit cost. High fuel taxes, on the order of $2.00 per gallon (2007$), have somewhat greater effects, arguably more favorable cost-effectiveness ratios, and produce their effects much more quickly because they affect the usage rate of both new and used vehicles. Policy costs vary greatly with assumptions about the reason for the apparent myopia commonly observed in consumer demand for fuel efficiency, and with the inclusion or exclusion of ancillary costs of congestion, local air pollution, and accidents.  相似文献   

6.
The US Corporate Average Fuel Economy (CAFE) regulations are intended to influence automaker vehicle design and pricing choices. CAFE policy has been in effect for the past three decades, and new legislation has raised standards significantly. We present a structural analysis of automaker responses to generic CAFE policies. We depart from prior CAFE analyses by focusing on vehicle design responses in long-run oligopolistic equilibrium, and we view vehicles as differentiated products, taking demand as a general function of price and product attributes. We find that under general cost, demand, and performance functions, single-product profit maximizing firm responses to CAFE standards follow a distinct pattern: firms ignore CAFE when the standard is low, treat CAFE as a vehicle design constraint for moderate standards, and violate CAFE when the standard is high. Further, the point and extent of first violation depends upon the penalty for violation, and the corresponding vehicle design is independent of further standard increases. Thus, increasing CAFE standards will eventually have no further impact on vehicle design if the penalty for violation is also not increased. We implement a case study by incorporating vehicle physics simulation, vehicle manufacturing and technology cost models, and a mixed logit demand model to examine equilibrium powertrain design and price decisions for a fixed vehicle body. Results indicate that equilibrium vehicle design is not bound by current CAFE standards, and vehicle design decisions are directly determined by market competition and consumer preferences. We find that with increased fuel economy standards, a higher violation penalty than the current stagnant penalty is needed to cause firms to increase their design fuel economy at equilibrium. However, the maximum attainable improvement can be modest even if the penalty is doubled. We also find that firms’ design responses are more sensitive to variation in fuel prices than to CAFE standards, within the examined ranges.  相似文献   

7.
Panel data analysis is used within a fixed effect model to examine the relationship between vehicle safety ratings and fuel efficiency of 45 new vehicle models sold in the US between 2002 and 2007. While conventional wisdom and most early literature suggest that lighter, more fuel efficient vehicles are less safe to their occupants, the tests show a positive relationship between vehicle safety ratings and fuel efficiencies not only within and across most size classes but also for vehicles produced by both the US and Asian automakers. We also explore the design initiatives by manufacturers to compensate for the reductions in weight/size of fuel-efficient vehicles.  相似文献   

8.
The automated highway systems (AHS) are not designed as stand-alone transportation facilities. Drivers will by necessity drive from their origins to the AHS entrance, and from the AHS exit to their final destinations. Therefore, the AHS will affect other transportation facilities, and should be integrated with all other facilities in the transportation system. Interfaces create much of the congestion for today’s transportation systems. Likewise, AHS interfaces may cause a similar problem, due to either AHS interactions with conventional systems or internal limitations from AHS merging capabilities. If these problems exist, either the AHS or the conventional road network cannot function properly. Consequently, the system as a whole may break down and the AHS could potentially become a detriment to the overall transportation system.Clearly, not enough is known about the automated merging process to determine what conditions would lead to congestion at interface points. The current macroscopic analysis techniques assume parameters that are not applicable to an AHS, and no detailed AHS merging models have been developed and validated. This paper addresses the interface problem between an AHS, and conventional roadway. Specifically, it presents a microscopic simulation model for one scenario of the automated merging maneuver. The results of the model show that for low flows and conventional highway speeds, an one-lane AHS merging section with a dedicated automated entrance ramp has many similar characteristics as a two-lane conventional freeway with or without fixed-time ramp metering. However, when the conventional freeway starts to “break down” near its capacity, the AHS continues to perform with little delay. The model also validates that the minimum ramp length requirements are a function of the merging vehicle’s speed, the mainline vehicles’ speed, and the acceleration and deceleration rates of the merging vehicle.  相似文献   

9.
Carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NO) emission factors (EFs) are measured with a commercial vehicle emissions remote sensing system (VERSS) during a large-scale vehicle exhaust emissions study in Las Vegas. Particulate matter (PM) EFs are simultaneously measured for individual vehicles with a newly developed PM-VERSS based on ultraviolet backscatter light detection and ranging (Lidar). The effectiveness of CO and HC EFs as proxy for NO and PM EFs for spark-ignition vehicles is evaluated. Poor correlations were found between EFs for pollutants on an individual vehicle basis indicating that high EFs for one or more pollutants cannot be used as a predictor of high EFs for other pollutants. Stronger functional relationships became evident after averaging the EF data in bins based on rank-order of a single pollutant EF. Low overlap between the highest 10% emitters for CO, HC, NO, and PM was found. These results imply that for an effective reduction of the four pollutants, inspection and maintenance (I/M) programs, including clean screening, should measure all four pollutants individually. Fleet average CO and HC concentrations determined by gaseous VERSS were compared with fleet average CO and HC concentrations measured at low-idle and at high-idle during local I/M tests for spark-ignition vehicles. The fleet average CO concentrations measured by I/M tests at either idle were about half of those measured by remote sensing. The fleet average high-idle HC concentration measured by I/M tests was about half of that measured by VERSS while low-idle I/M and VERSS HC average concentrations were in better agreement. For a typical vehicle trip, most of the fuel is burned during non-idle conditions. I/M measurements collected during idling conditions may not be a good indicator of a vehicle’s potential to be a high emitter. VERSS measurements, when the vehicle is under a load, should more effectively identify high emitting vehicles that have a large contribution to the mobile emissions inventory.  相似文献   

10.
In today’s world of volatile fuel prices and climate concerns, there is little study on the relationship between vehicle ownership patterns and attitudes toward vehicle cost (including fuel prices and feebates) and vehicle technologies. This work provides new data on ownership decisions and owner preferences under various scenarios, coupled with calibrated models to microsimulate Austin’s personal-fleet evolution.Opinion survey results suggest that most Austinites (63%, population-corrected share) support a feebate policy to favor more fuel efficient vehicles. Top purchase criteria are price, type/class, and fuel economy. Most (56%) respondents also indicated that they would consider purchasing a Plug-in Hybrid Electric Vehicle (PHEV) if it were to cost $6000 more than its conventional, gasoline-powered counterpart. And many respond strongly to signals on the external (health and climate) costs of a vehicle’s emissions, more strongly than they respond to information on fuel cost savings.Twenty five-year simulations of Austin’s household vehicle fleet suggest that, under all scenarios modeled, Austin’s vehicle usage levels (measured in total vehicle miles traveled or VMT) are predicted to increase overall, along with average vehicle ownership levels (both per household and per capita). Under a feebate, HEVs, PHEVs and Smart Cars are estimated to represent 25% of the fleet’s VMT by simulation year 25; this scenario is predicted to raise total regional VMT slightly (just 2.32%, by simulation year 25), relative to the trend scenario, while reducing CO2 emissions only slightly (by 5.62%, relative to trend). Doubling the trend-case gas price to $5/gallon is simulated to reduce the year-25 vehicle use levels by 24% and CO2 emissions by 30% (relative to trend).Two- and three-vehicle households are simulated to be the highest adopters of HEVs and PHEVs across all scenarios. The combined share of vans, pickup trucks, sport utility vehicles (SUVs), and cross-over utility vehicles (CUVs) is lowest under the feebate scenario, at 35% (versus 47% in Austin’s current household fleet). Feebate-policy receipts are forecasted to exceed rebates in each simulation year.In the longer term, gas price dynamics, tax incentives, feebates and purchase prices along with new technologies, government-industry partnerships, and more accurate information on range and recharging times (which increase customer confidence in EV technologies) should have added effects on energy dependence and greenhouse gas emissions.  相似文献   

11.
This paper aims to evaluate the influence of policies, attitudes and perceptions when incentivizing alternative fuel vehicles. The impact of possible policies such as gasoline taxes increases, purchase price subsidies, tax exemptions, and increases in fuel recharging station availability for alternative fuelled vehicles is evaluated using hybrid choice models. The models also allow assessing the sensitivity of latent variables (i.e., attitudes and perceptions) in the car purchase behaviour. The models are estimated using data from a stated choice survey collected in five Colombian cities. The latent variables are obtained from the rating of statements related to the transport system, environmental concern, vehicle preferences, and technology. The modelling approach includes regression between latent variables. Results show that environmental concern and the support for green transport policies have a positive influence on the intention to purchase alternative fuel vehicles. Meanwhile, people who reveal to be car-dependent prefer to buy standard fuelled vehicles. The analysis among cities shows similar trends in individual behaviour, although there are differences in attribute sensitivities. The policy scenario analysis revealed high sensitivity to capital cost and the need for extensive investments in refuelling stations for alternative fuel vehicles to become attractive. Nevertheless, all policies should not only be directed at infrastructure and vehicles but also be focused on user awareness and acceptance of the alternative fuel vehicles. The analysis suggests that in an environmentally conscious market, people prefer alternative fuels. However, if the transport policies support private transport, the market shares of alternative fuel vehicles will decrease.  相似文献   

12.
This paper develops a new method to solve multivariate discrete–continuous problems and applies the model to measure the influence of residential density on households’ vehicle fuel efficiency and usage choices. Traditional discrete–continuous modelling of vehicle holding choice and vehicle usage becomes unwieldy with large numbers of vehicles and vehicle categories. I propose a more flexible method of modelling vehicle holdings in terms of number of vehicles in each category, using a Bayesian multivariate ordinal response system. I also combine the multivariate ordered equations with Tobit equations to jointly estimate vehicle type/usage demand in a reduced form, offering a simpler alternative to the traditional discrete/continuous analysis. Using the 2001 National Household Travel Survey data, I find that increasing residential density reduces households’ truck holdings and utilization in a statistically significant but economically insignificant way. The results are broadly consistent with those from a model derived from random utility maximization. The method developed above can be applied to other discrete–continuous problems.  相似文献   

13.
Considering the role of transport for a 1.5 Degree stabilization pathway and the importance of light-duty vehicle fuel efficiency within that, it is important to understand the key elements of a policy package to shape the energy efficiency of the vehicle fleet. This paper presents an analysis focusing on three types of policy measures: (1) CO2 emission standards for new vehicles, (2) vehicle taxation directly and indirectly based on CO2 emission levels, and (3) fuel taxation. The paper compares the policies in the G20 economies and estimates the financial impact of those policies using the example of a Ford Focus vehicle model. This analysis is a contribution to the assessment of the role of the transport sector in global decarbonisation efforts. The findings of this paper show that only an integrated approach of regulatory and fiscal policy measures can yield substantial efficiency gains in the vehicle fleet and can curb vehicle kilometres travelled by individual motorised transport. Using the illustrative example of one vehicle model, the case study analysis shows that isolated measures, e.g. fuel efficiency regulation without corresponding fuel and vehicle taxes only have minor CO2 emission reduction effects and that policy measures need to be combined in order to achieve substantial emission reduction gains over time. The analysis shows that the highest level of impact is achieved by a combination regulatory and fiscal policies rather than only one policy even if this policy is more aggressive. When estimating the quantitative effect of fuel efficiency standards, vehicle and fuel tax, the analysis shows that substantial gains with regard to CO2 emission are only achieved at a financial impact level above 500 Euros over a four year period.  相似文献   

14.
Despite the rapid market penetration of hybrid vehicles (HVs), their usage and contributions to environmental protection have not been examined by vehicle traveling data. In this paper, we analyzed Japan’s used car market data to understand how HVs are used on the street. We find GV drivers with high travel demand switched from GVs to HVs during the transition period. Despite HV owners driving much longer distances than conventional gasoline vehicle (GV) owners, they emit less carbon dioxide (CO2) emissions, owing to better fuel economy. We also find that HV owners spend roughly the same amount of money annually as GV owners. However, the per-kilometer travel cost of HVs is much lower than that of GVs even if the depreciation cost of the vehicle and vehicle related taxes are included in the analysis.  相似文献   

15.
Despite the early appeal of the light vehicle, increases in the average annual income have allowed consumers to consider a broader range of vehicles so that the negative aspects of mini‐vehicles such as higher noise and vibration levels, the lack of horsepower and instability in certain driving conditions have made light vehicles less tolerable. The “oil shock” shattered economic projections, and people began to acknowledge that living in a world with limited resources was a harsh reality. Concurrently, congestion increased dramatically in urban areas as a result of the popularity of automobiles, and producers made a number of design changes to improve the safety and comfort limitations of light vehicles. Thus, in a world where fuel economy and ease of use gained a greater meaning, light vehicles slowly regained their original appeal.

Light vehicles may play a greater role in the future. Studies indicate that light vehicles tend to be driven by females and elderly people and current trends indicate that the number of female drivers is increasing and that the average age of the Japanese population is getting higher. Furthermore, migration patterns indicate that a greater number of people are moving to smaller cities and their outlying areas as a result of national decentralization policies. The migration pattern may popularize light vehicles because vehicle ownership rates are higher in these areas than in larger cities. Another development which may increase the popularity of light vehicles is that more families are owning more than one car and light vehicles are popular as second vehicles. Moreover, the prospects of low economic growth have tempered the importance of comfortable amenities, and the virtues of maneuverability and fuel economy have become more important.

  相似文献   

16.
Vehicle soak time, the duration of time a vehicle’s engine is at rest prior to being started, and its distribution function are important transportation activity data inputs for mobile emissions inventory estimation due to their impacts on vehicle start and evaporative emissions. This paper provides vehicle emission researchers with an overview of statistical analysis methods relevant to analyzing vehicle soak time data. Many of these methods are already in use in emissions research and have appeared in the literature. These methods are reviewed and further details regarding the implementation and interpretation of these methods are provided. Statistical methods relevant to the analysis of soak time data that have yet to appear in the emissions literature, including kernel density estimation and generalized linear models, are also introduced. Advantages and disadvantages of the methods are compared and theoretical justification is provided. Issues of correlated observations and censored data are discussed. General guidelines for the analysis of soak time data, such as stratification by start type and geographical region, are established. Finally, a subset of the statistical methods discussed is used to analyze the US Environmental Protection Agency’s 3-city data.  相似文献   

17.
The literature analyzes changes in vehicle attributes that can improve fuel economy to meet Corporate Average Fuel Economy (CAFE) standards. However, these analyses exclude either vehicle price, size, acceleration or technology advancement. A more comprehensive examination of the trade-offs among these attributes is needed, this case study focuses on technically feasible modifications to a reference 2012 vehicle to meet the 2025 fuel economy target. Scenarios developed to examine uncertainty in technology advancement indicate that expected technology cost reductions over time will be insufficient to offset the costs of additional fuel efficiency technologies that could be used to meet the 2025 fuel economy target while maintaining other vehicle attributes. The mid-price scenario results show the targeted 66% increase in fuel economy from 2012 to 2025 can be achieved with (i) a 10% ($2070) vehicle price increase (lightweight hybrid electric vehicle), (ii) a 31% (2.9 second) increase in the 0–97 km/h (60 mph) acceleration time (smaller engine), or (iii) a 17% (700 L) decrease in interior volume (smaller body) while maintaining other vehicle attributes. These results are consistent with those obtained using methods that generalize the US light-duty vehicle fleet, but are not a forecast of future vehicle attributes because combinations of less perceptible changes to vehicle price, acceleration and size would also be feasible. This study shows there are numerous ways that 2025 fuel economy targets can be met; therefore, the trade-offs quantified provide important insights on the implications of future CAFE standards.  相似文献   

18.
The transition to a low carbon transport world requires a host of demand and supply policies to be developed and deployed. Pricing and taxation of vehicle ownership plays a major role, as it affects purchasing behavior, overall ownership and use of vehicles. There is a lack in robust assessments of the life cycle energy and environmental effects of a number of key car pricing and taxation instruments, including graded purchase taxes, vehicle excise duties and vehicle scrappage incentives. This paper aims to fill this gap by exploring which type of vehicle taxation accelerates fuel, technology and purchasing behavioral transitions the fastest with (i) most tailpipe and life cycle greenhouse gas emissions savings, (ii) potential revenue neutrality for the Treasury and (iii) no adverse effects on car ownership and use.The UK Transport Carbon Model was developed further and used to assess long term scenarios of low carbon fiscal policies and their effects on transport demand, vehicle stock evolution, life cycle greenhouse gas emissions in the UK. The modeling results suggest that policy choice, design and timing can play crucial roles in meeting multiple policy goals. Both CO2 grading and tightening of CO2 limits over time are crucial in achieving the transition to low carbon mobility. Of the policy scenarios investigated here the more ambitious and complex car purchase tax and feebate policies are most effective in accelerating low carbon technology uptake, reducing life cycle greenhouse gas emissions and, if designed carefully, can avoid overburdening consumers with ever more taxation whilst ensuring revenue neutrality. Highly graduated road taxes (or VED) can also be successful in reducing emissions; but while they can provide handy revenue streams to governments that could be recycled in accompanying low carbon measures they are likely to face opposition by the driving population and car lobby groups. Scrappage schemes are found to save little carbon and may even increase emissions on a life cycle basis.The main policy implication of this work is that in order to reduce both direct and indirect greenhouse gas emissions from transport governments should focus on designing incentive schemes with strong up-front price signals that reward ‘low carbon’ and penalize ‘high carbon’. Policy instruments should also be subject to early scrutiny of the longer term impacts on government revenue and pay attention to the need for flanking policies to boost these revenues and maintain the marginal cost of driving.  相似文献   

19.
Under the Alternative Motor Fuels Act (AMFA), vehicles that run on ethanol, methanol, or natural gas get extra credits in the calculation of Corporate Average Fuel Economy (CAFE). This paper uses hedonic techniques to examine the effect of production of alternative-fuel vehicles (AFVs) on the implicit price of fuel economy. This study finds that, after AFVs came to market, the marginal value of fuel economy from companies producing them decreased. This finding suggests that manufacturers who produced AFVs were willing to offer a lower price for fuel economy, because automakers had an additional way to achieve fuel economy standards beyond improving the fuel efficiency of conventional cars. These findings bolster the argument that a major role of the AMFA credit for AFVs is to allow automakers to increase their production of fuel-inefficient vehicles.  相似文献   

20.
This paper analyses transport energy consumption of conventional and electric vehicles in mountainous roads. A standard round trip in Andorra has been modelled in order to characterise vehicle dynamics in hilly regions. Two conventional diesel vehicles and their electric-equivalent models have been simulated and their performances have been compared. Six scenarios have been simulated to study the effects of factors such as orography, traffic congestion and driving style. The European fuel consumption and emissions test and Artemis urban driving cycles, representative of European driving cycles, have also been included in the comparative analysis. The results show that road grade has a major impact on fuel economy, although it affects consumption in different levels depending on the technology analysed. Electric vehicles are less affected by this factor as opposed to conventional vehicles, increasing the potential energy savings in a hypothetical electrification of the car fleet. However, electric vehicle range in mountainous terrains is lower compared to that estimated by manufacturers, a fact that could adversely affect a massive adoption of electric cars in the short term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号