共查询到16条相似文献,搜索用时 119 毫秒
1.
为了进一步提高交通流短时预测的效果,在分析现有预测模型存在问题的基础上,设计了1种基于时间序列相似性搜索的交通流短时多步预测方法.利用界标模型对交通流时间序列数据进行模式表示,在历史数据库中搜索与当前交通流时间序列相似度较高的历史时间序列,进而确定与预测时刻相对应的历史数据,利用回声状态网络模型实现交通流的短时多步预测.采用某特大城市快速路5 min采样间隔的交通流量数据进行实验验证和对比分析.实验结果表明,回声状态网络模型的预测精度分别比ARIMA模型和BP神经网络模型提高了6.25%和3.85%,以时间序列相似性搜索结果作为模型输入数据能够进一步提高交通流短时预测的精度. 相似文献
2.
实时准确可靠的短时交通流预测是智能运输系统的基础,有很多种方法被用来对交通流进行预测.基于模式识别的交通流预测方法是较新的预测方法之一.提出一个用于短时交通流预测的模式和对应的模式识别算法,并对城区道路的交通流做了实验预测,结果表明在趋势上较为准确. 相似文献
3.
4.
精确的交通流预测是智能运输系统的重要技术支撑,以实际交通流数据为背景,提出了一种新型的基于深度学习的交通流预测模型.将若干个降噪自编码器(DAE)进行堆叠,组成栈式降噪自编码器模型(SDAE),完成了深度学习框架的构建.进一步通过在顶层结构中增加标准预测模型,实现了基于深度学习的预测模型的搭建.结合实际交通流数据,开展... 相似文献
5.
短时交通流预测可为智能交通控制和管理提供决策依据,为了提高短时交通流的预测精度,统筹考虑短时交通流的混沌时间序列和非线性特征,提出一种基于相空间重构和PSO-RBF的短时交通流预测方法(PSR-PSO-RBF方法)。采用延迟嵌入定理,构造一个基于相空间重构的短时交通流时间序列;在剖析RBF神经网络不足之处的基础上,采用PSO算法,确保短时交通流预测的精确度和可靠性。实例分析结果表明,该方法可有效提高短时交通流的预测精度和可靠性,其预测误差较小。 相似文献
6.
7.
为了提高城市道路短时交通流预测的精度,提出了一种基于时空遗传粒子群支持向量机的短时交通流预测模型.通过主成分分析法对路网原始交通流量进行时空相关性分析,用较少的主成分代替原始交通流量并作为预测因子,在粒子群算法中引入遗传算法的交叉和变异因子,避免粒子群算法陷入局部最优.利用改进后的粒子群算法优化支持向量机参数,得到最优的支持向量机模型,并实现城市道路的短时交通流预测.以长春市路网的实测数据为基础进行了实例验证,结果表明,优化支持向量机参数时,遗传粒子群算法不会陷入局部最优,优化效果更好;与粒子群支持向量机模型和遗传粒子群支持向量机模型相比,所提出预测模型的相对误差波动较稳定,平均预测精度分别提高了4.96%和3.41%. 相似文献
8.
传统的交通流预测技术使用静态和离线算法,无法对模型的参数值和内部结构进行在线调整.然而,交通流变化具有明显的动态性,其内在模式会随时间发生变化,导致构建好的模型准确度下降.针对上述问题,提出了基于数据流集成回归的短时交通流预测模型.将不断产生的交通流数据划分成数据块,每个数据块训练1个基础回归模型,然后加权组合为集成模型.通过不断训练新的基础模型,并置换出集成模型中准确度最差的基础模型,实现在线更新.在实测数据上的对比实验结果表明,与静态离线的BN模型相比,模型的均方根误差降低了19.5%,运算时间降低了48.7%,并能够快速适应交通状况发生明显变化的情况,适用于城市主干道路的短时交通流预测问题. 相似文献
9.
10.
针对现有交通流参数短时预测方法的不足,考虑到交通流数据序列的非线性特征,提出一种基于决策树理论的非参数预测方法。采用时间序列滞后项将交通流参数序列转化成非参数模型能处理的数据格式。考虑到交通流参数之间存在长期协整关系,构建流量速度滞后项的组合向量,为预测模型提供基础数据。构建基于分类回归树(CART)的交通流参数短时预测模型。基于实际采集的道路交通流数据,对模型在不同等级道路不同速度区间下的性能进行评估。结果表明,所提出的模型相较于常用的时间序列模型,精度有所提高;速度预测准确性普遍高于流量,速度平均绝对百分比误差基本小于13%,而流量预测则达到了30%;采用工作日和周末数据分别建模能够有效提升预测性能;不同速度区间下的预测性能评估显示,模型在各等级道路中速区间的预测结果具有较高的准确性与稳定性。 相似文献
11.
短期交通流量预测是智能交通系统的核心研究内容之一.针对城市交通流具有的混沌特性,提出1种具有较高精度的短期交通流量多步预测方法,以支持交通控制和交通流诱导.利用最大Lyapunov指数方法判别交通流量时间序列的混沌特性,对交通流量时间序列进行相空间重构,并在此基础上结合加权一阶局域方法设计了基于混沌理论的交通流量多步预测算法.将此方法运用于实际道路交通流量的多步预测,比较多步预测值与实际流量值,其平均绝对百分比误差为3.33%,平均绝对误差为9.05/[pcu· (5min)-1],均方根误差为10.36/[pcu·(5 min)-1].应用结果表明,该预测方法具有较高的精度. 相似文献
12.
一种基于周相似特性的实时交通量预测模型 总被引:2,自引:0,他引:2
针对城市道路交通流量的周相似特性,对实时采集的流量与历史流量进行对比分析,利用均方根误差法确定权重,采用指数平滑方法对权重进行修正,提出一种实时交通量预测模型,并给出利用该模型预测的实例。利用最小二乘法对该预测进行了改进,进一步扩大和提高了模型的应用范围和实用性。 相似文献
13.
14.
15.
空中交通流量短时预测是空中交通管理的基础,是有效缓解交通拥堵问题的前提。为提高空中交通流量短时预测的精度,减小空中交通管制员的工作压力,提出了基于小波优化GRU-ARMA的空中交通流量短时预测方法。在传统预测方法的基础上,通过小波变换对原始流量数据进行多尺度分解,提取不同频率交通流量的细节特征,对原始流量数据进行预处理。同时,根据小波变换,在低频处将频率细分作为趋势项,高频处将时间细分作为噪声项。其中,趋势项反映了空中交通流量随时间演化的整体趋势性,噪声项反映了随机因素对空中交通流量的综合影响。使用门控循环单元(GRU)神经网络模型预测趋势项,自回归滑动平均模型(ARMA)模型预测噪声项;将趋势项和噪声项的预测值叠加,得到最终的短时流量预测值。误差分析表明,该方法在每个预测点上的误差保持在2%左右,预测效果稳定;而直接采用原始流量数据进行预测的GRU、BiLSTM、CNN-LSTM神经网络模型及单一的ARMA模型,每个点的预测误差在5%~37.14%之间。与GRU、BiLSTM、CNN-LSTM神经网络模型相比,该模型的预测精度分别提高了3.02%,5.39%,5.05%。 相似文献