首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
丁坝紊动特性试验研究   总被引:4,自引:2,他引:2  
利用三维超声学多普勒流速仪对丁坝坝头附近水流和回流区水流的紊动特性进行了系统的观测和分析,得到了丁坝坝头和回流区的水流特性及紊动动能的分布规律。  相似文献   

2.
通过动床冲刷试验对不同形式丁坝的水流紊动特性进行对比分析,结合河床冲刷地形等值线图,找出水流紊动特性与河床冲刷之间的关系。在此基础上,深入分析不同形式丁坝对水流紊动特性的影响,优选出新型坝体结构形式。试验结果表明:丁坝周围地形的冲刷与水流紊动的强烈程度有关,冲刷坑的深度随水流紊动特性的变化有先增大后减小的趋势;沙垄主要由粗砂组成,且断面形状呈“流线型”,回流区出现细砂覆盖层;圆弧断面和勾头形式丁坝在减弱水流紊动方面具有一定的优势。  相似文献   

3.
通过水槽试验,结合理论分析,研究丁坝附近水流紊动强度沿水流方向、水深方向和横向的分布规律。绘制5种不同坝体结构形式其周围水流脉动动能和紊动强度的分布等值线图并分析分布规律,进一步探讨不同坝体挑角对丁坝附近水流紊动强度和脉动动能的影响。  相似文献   

4.
分汊河段水流的紊动特性对河床冲淤变化和鱼类生境有重要影响,而关于分汊河段水流紊动特性的水平分布的研究较少。为了厘清分汊河段水流的紊动特性,以长江上游部分河段为原型,开展概化模型试验,并对不同深度水流的3个方向(纵向、横向和垂向)的时均流速、紊动强度及紊动能的水平分布特征进行研究。结果表明:分汊水流在分流和汇流区域有低流速区,该区域的水流紊动较强。不同深度水流的紊动强弱与滩体水平剖面面积呈正相关关系,与河床的距离呈负相关关系;近底水流的强紊动区域较为分散;上层水流的强紊动区域较为集中。  相似文献   

5.
<正>1 前言 丁坝绕流的模拟是检验紊流模型成功与否的最好算例.本文利用物理概念明确的Prandtl混合长紊流模型,采用三角元法,成功地模拟了紊动特性较强的丁坝绕流,说明Prandtl混合长紊流模型可以用于包含回流水域的水流计算.2 基本方程及数值计算方法2.1 基本方程 平面二维非恒定水流运动包含二阶紊动项的基本方程:  相似文献   

6.
利用FLUENT中的RNG k-ε湍流模型和VOF模型对淹没式丁坝周围流场进行了数值模拟研究.计算结果表明,由于丁坝的束水作用,主流区的流速增大,丁坝下游出现了较大的回流区,回流区的流速较小.同时,水流在丁坝处发生了壅水现象,靠近丁坝上游的水位增高,经过丁坝后的水位迅速下降,并在丁坝下游沿程逐渐恢复.计算结果和试验观察与丁坝绕流客观规律相符合,流速计算结果与试验数据吻合较好,说明该模型可用于航道整治中有关丁坝的工程计算中.  相似文献   

7.
为探讨大尺度散粒体周围水流的紊动特性,采用高度Δ=5 cm的正方体、球体和四面体概化河床孤礁形态,基于声学多普勒测速仪测量明渠紊流的6组数据,研究脉动流速的统计特性以及紊动强度、雷诺应力和紊动能的分布特征。结果表明:大尺度散粒体周围水流脉动流速的统计参数与散粒体形态密切相关;标准差σ_u~+、峰度K_u的垂线分布较为均匀,σ_u~+沿程分布呈先增大后减小的变化趋势,散粒体上、下游各断面中垂线上的K_u总体大于3,多呈高狭峰,散粒体上游偏度S_k基本为负,下游S_k随水深的增大由正逐渐变为负; 3种散粒体周围水流的纵向紊动强度T_u~+的垂线分布较为均匀,沿程各断面的T_u~+随弗劳德数F_r的增大而增大;正方体的T_u~+总体最大,球体T_u~+次之,四面体T_u~+最小; 3种散粒体周围水流的雷诺应力R~+的垂线分布从近水面到槽底呈逐渐增大的趋势,紊动能E~+的垂线分布呈两端小、中间大的趋势; R~+、E~+在散粒体下游2Δ附近有最大值;大尺度散粒体的阻水面积与其对下游水流的影响强度及范围呈正相关。  相似文献   

8.
勾头丁坝下游流场初探   总被引:1,自引:1,他引:0  
笔者的试验资料表明,勾头丁坝下游回流区及恢复区近段流速分布呈自相似性。根据相似原理,二维沿水深平均Reynolds方程可转化为常微分方程,这样就得到回流区及恢复区近段流速分布式。宽浅明槽中的试验表明,该流速分布值与实测值比较吻合。此外,本文还对紊动粘性系数沿水流方向的变化作了简要探讨。  相似文献   

9.
丁坝回流长度   总被引:6,自引:1,他引:5  
丁坝下游水流断面突然放大,水流分离,形成狭长的回流区,根据水流分离区局部水头损失的包达(Borda)公式,并仿沿程水头损失的达西(Darcy)公式,可获得非淹没丁坝回流长度的计算公式,用矩形水槽和抛物线形河底的水槽试验资料检验,结果良好  相似文献   

10.
透水丁坝坝后回流区长度研究   总被引:11,自引:0,他引:11  
基于沿水深方向积分的平面二维水流运动方程组,在采用合理的假定条件下,推导出透水丁坝坝后回流区长度计算公式,研究结果表明,透水丁坝坝后回流区长度不仅与坝长、水深、糙率、面积缩窄比、河宽缩窄比等因素有关,而且与丁坝本身的渗流量有关。  相似文献   

11.
为研究淹没齿型丁坝阻力与其壅水响应关系,利用物理水槽试验与理论分析相结合的方法,建立了淹没齿型丁坝阻力系数计算方法,其阻力系数大小主要与无量纲淹没度与相对坝长相关。进而采用动量守恒的方法构建了阻力系数与壅水效应相关联的淹没齿型丁坝壅水预测模型。通过实测数据对壅水预测模型进行验证,计算结果与水槽试验数据符合良好。研究成果可为其他形式丁坝或相关涉及建筑物阻力与壅水效应研究提供参考与借鉴。  相似文献   

12.
通过水槽试验,结合理论分析,探讨了圆弧型丁坝产生卡门涡的机理及坝后冲刷的原因,并进一步分析了卡门涡与坝后冲刷的关系。在卡门涡中心形成的低压区将泥沙吸入其中心,是坝下冲刷的主要原因之一。卡门涡边缘的线速度和来流速度的合成速度与坝后泥沙起动速度的关系,决定了坝后冲刷区和淤积区的分布。  相似文献   

13.
费晓昕 《水运工程》2021,(2):104-108
抛石丁坝是河道中应用十分广泛的整治建筑物,能够束水攻沙,保护岸滩免受水流冲刷,然而抛石丁坝水毁现象时常发生。针对这一现象,利用动床水槽物理模型试验对平原河流丁坝的水毁破坏进行了研究,分析丁坝水毁破坏的常见形式,认为坝头块石的坍塌流失是影响丁坝整体稳定性的主要因素,即抛石丁坝稳定性可基于坝头水毁来研究。在此基础上,定义了坝头水毁程度判别指标,研究指标的求解方法和坝头水毁程度等级划分方法,得到了坝头不同水毁程度对应的指标值,并对丁坝维护时机的选择加以说明。该方法为抛石丁坝的维护提供了解决思路,有利于抛石丁坝整治效果的持续发挥。  相似文献   

14.
山区河流分汊河段江心洲尾因水流汇合产生斜流,从而出现碍航问题。为揭示江心洲尾斜流对航行安全的影响,在已有的沅水大洑潭航电枢纽物理和船舶模型试验基础上,采用MIKE 21分析航道治理工程前后汇流区的水动力特征和工程改善效果。结果表明:枯水期因右汊来流流速较大且与航线间存在夹角,导致汇流区航线横流超标;在洲尾布置平行于航线的顺坝或导流墩,虽然能有效减小横流影响,但航线横流分布范围增大,流速大小仍超标。结合调整航线、疏浚航道浅区和偏转顺坝与导流墩整体布置角度等多种工程措施,可保证洲尾后航行水流指标基本满足规范要求。  相似文献   

15.
潮汐河口淹没丁坝群坝田水动力条件复杂多变,坝田复杂的水流结构决定了坝田内的泥沙淤积过程及淤积形态。以长江口北槽丁坝群形成坝田为例,分析坝田形成后淤积形态及淤积速率特征和规律。分析结果表明:随着时间推移,坝田内2 m等深线逐渐向距坝头0. 2倍坝长处靠近,5 m等深线逐渐向坝头处靠近;坝田的初始容积与冲淤平衡时的平衡容积呈对数关系;在丁坝间距为3~4倍坝长时,坝田内淤积分布最为均衡;坝田内淤积速率的拐点均出现在坝田形成后5~6 a。另外,从工程影响淤积丁坝布置参数方面探讨坝田内淤积特征的成因。  相似文献   

16.
航道整治建筑物中的抛石丁坝水毁现象十分严重,其可靠性及使用寿命难以准确预测。针对这一问题,以非恒定流流量过程为控制条件,通过水槽物理模型试验,对"流量过程和最大冲深"这一组合进行了试验研究和计算方法研究,定义出抛石丁坝失效准则,采用基础统计理论,得出流量过程和最大冲深相结合的可靠度及使用寿命预测的概率模型计算方法。该方法对完善航道整治建筑物可靠度研究有一定的借鉴意义,还可为航道管理部门提供参考。  相似文献   

17.
台风过境产生极端波浪造成斜坡式海堤越浪,现有计算越浪量的经验公式都存在适用性的问题.为探求台风天气下舟山区域斜坡堤越浪量计算公式,基于VOF方法,对Navier-Stokes方程和k-ε方程进行求解,建立速度边界造波和阻尼消波的数值波浪水槽.在水槽中建立斜坡堤模型,通过改变影响越浪量的相关因素,模拟台风浪条件下规则波作...  相似文献   

18.
袁文昊  刘红 《水运工程》2022,(1):112-118
基于实测水文和地形资料对射阳港3.5万吨级进港航道开挖以后的回淤特征及回淤机理进行研究。结果表明:射阳港所在海域受废黄河三角洲冲刷泥沙输移的影响,含沙量较高,为航道回淤提供了丰富的泥沙来源;进港航道年回淤量为995万m3,其中导堤掩护段占全航道回淤量的93%,该段平均回淤强度可达5.0 m/a,高于开敞海域段的0.6 m/a。导堤掩护段航道回淤主要是由于涨潮期带入的高含沙水流在憩流时刻形成悬沙落淤所致,航道两侧滩面上的流泥归槽以及洪季期间上游河流的开闸泄洪对航道回淤也有一定贡献。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号