首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
当采用弹性理论对舰船结构进行稳定性计算时,其欧拉应力超过了材料的比例极限,可应用临界应力与欧拉应力关系曲线得到计算构件的临界应力。因此,稳定性的临界应力与欧拉应力关系曲线将影响到舰船结构的稳定性设计,乃至总纵极限强度的校核。通过对相关资料进行综合分析,就“舰船通用规范”中的稳定性临界应力与欧拉应力关系曲线问题提出了看法。  相似文献   

2.
本文通过采用ANSYS5.6的结构静力学分析功能,对一种特殊双体船大圆筒下沉专用双体船连结桥进行强度计算,得到结构的应力分布。计算结果表明,最大应力143MPa发生在连接桥端部,强度满足要求。  相似文献   

3.
对盲孔法测残余应力中的等轴三角应变花应变释放系数进行有限元标定和塑性修正,得到了塑性修正后的应变释放系数;采用盲孔法对高强度钢水下承压结构典型部位的焊接残余应力进行测量,根据测试得到各测点的释放应变值,结合修正后的应变释放系数计算得到了水下承压结构典型测点的残余应力值。结果表明,水下承压结构焊缝附近纵向残余应力可达0.5倍屈服极限,周向残余应力可达0.4倍屈服极限。  相似文献   

4.
对盲孔法测残余应力中的等轴三角应变花应变释放系数进行有限元标定和塑性修正,得到了塑性修正后的应变释放系数;采用盲孔法对高强度钢水下承压结构典型部位的焊接残余应力进行测量,根据测试得到各测点的释放应变值,结合修正后的应变释放系数计算得到了水下承压结构典型测点的残余应力值。结果表明,水下承压结构焊缝附近纵向残余应力可达0.5倍屈服极限,周向残余应力可达0.4倍屈服极限。  相似文献   

5.
对新研制的自升式修井平台悬臂梁及支承基座强度进行有限元计算仿真,得到整体应力分布规律,确定受力较大的部位,并进行现场应力测试实验。考虑到现场测试的不足,使用有限元计算仿真进行包括钻台、悬臂梁及支承基座自重的3种测试工况下整体结构的应力。结果表明,其结构最大应力值均小于钢材许用应力,满足设计要求;对较大应力处的艉部基座应力部位进行结构改进,使其应力降低,提高了整体结构的安全性。  相似文献   

6.
船体结构应力监测点的选取方法研究   总被引:1,自引:0,他引:1  
船体结构应力实时监测系统通过在船体结构中植入应变传感器实现对结构强度的实时监测与评估.文章对船体结构应力实时监测系统中应力监测点的选取方法进行了研究.通过全船结构有限元分析方法得到船体结构在外载荷作用下的结构应力响应,在此基础上对结构监测点进行选择,通过根据高应力部位和考虑海况信息两种途径对监测点进行选取,并依据选定监测点位置处的受力特点给出了传感器的布置方法,最后给出了一条船的应用实例.  相似文献   

7.
尹群 《造船技术》2000,(1):36-37
本介绍了Super-SAP有限元分析软件的特点,并利用它对特定船体进行了结构有限元应力分析,从中得到了有益的结果。  相似文献   

8.
船舶减振支架是一种具有优良减振性能的隔振装置,使用弹性体将柴油机和齿轮箱等会发生振动行为的设备固定在减振支架上,能够有效防止设备在使用过程中因振动而对船体造成损伤。由于振动疲劳的影响,极易导致船舶减振支架结构在工作过程中突然发生疲劳断裂事故。本文首先对船舶减振支架进行有限元模态和频率响应分析,得到结构应力较大部位。然后,基于功率谱密度(PSD)法和Miner线性累积损伤理论对支架结构未考虑残余应力的振动疲劳寿命进行分析,得到结构易发生振动疲劳破坏的关键部位。最后,根据试验测得的焊接残余应力对S-N曲线进行修正,得到考虑不同焊接残余应力影响的减振支架振动疲劳寿命。研究结果表明:焊接残余应力对支架结构振动疲劳寿命的影响较大,应尽量降低或消除支架结构关键部位的有害焊接残余应力。  相似文献   

9.
为了研究裂纹位置与舰船结构之间的影响规律,应用有限元分析软件对舰船典型结构进行仿真计算,以应力响应为特征参数,得到相应结构在受到单向拉应力时的应力分布情况。通过对不同裂纹位置的应力响应情况进行对比分析,总结出裂纹与应力之间的规律。结果表明,应力响应作为损伤识别特征参数具有实际意义,在参数一致的情况下,边裂纹对结构的应力分布具有更强的影响,船体结构的应力分布情况随着裂纹的位置变化而改变,可为智能化舰船中的裂纹损伤识别提供技术支持。  相似文献   

10.
选取24 000 TEU集装箱船上层建筑作为研究对象,进行有限元建模,对其整体吊装过程进行模拟。对初始吊装方案和加强方案进行校核,查看结构应力和结构变形情况,并根据结果反馈对初始吊装方案和加强方案进行相应调整。优化模型显示结构突变成功消除。对吊点附近的结构进行加强,确保结构应力顺利传递,应力降至许用范围内,上层建筑安全吊装。  相似文献   

11.
球柱组合壳结构在船舶与海洋工程领域应用广泛,为考察球柱组合壳结构的力学性能,设计制作了球柱组合壳模型进行静水压力试验,测量其应力。通过对球柱组合壳结构的应力分布规律的研究,得到了球柱组合壳结构的应力与外压力的关系,并验证了球柱组合壳结构的连接处存在应力集中现象,利用试验数据得到了应力集中系数为1.4。  相似文献   

12.
对深水钻井船进行研究,采用疲劳评估方法中的谱分析法对深水钻井船的结构疲劳强度进行评估计算分析。对全船进行有限元分析,得到应力响应传递函数,从而得到应力范围的短期和长期分布,通过选择适当的S—N曲线和Miner线性疲劳累积损伤原理,计算得到热点的疲劳累积损伤度,从而得到疲劳寿命。  相似文献   

13.
对深水钻井船进行研究,采用疲劳评估方法中的谱分析法对深水钻井船的结构疲劳强度进行评估计算分析.对全船进行有限元分析,得到应力响应传递函数,从而得到应力范围的短期和长期分布,通过选择适当的S-N曲线和Miner线性疲劳累积损伤原理,计算得到热点的疲劳累积损伤度,从而得到疲劳寿命.  相似文献   

14.
对焊接初始缺陷于船体梁极限弯矩的影响进行了研究.采用热传递分析得到焊接结构的温度场,进而采用热弹塑性分析得到结构的焊接残余应力和焊接变形.将得到的焊接变形及残余应力作为结构的初始缺陷,对船体梁的极限弯矩进行了比较计算.结果表明,焊接初始缺陷对船体梁极限弯矩的影响不宜忽略,热传递及热弹塑性分析的方法可较好地模拟船体梁极限弯矩分析中的焊接初始缺陷.  相似文献   

15.
小水线面双体船典型节点抗疲劳设计   总被引:5,自引:3,他引:2  
小水线面双体船结构形式特殊,结构疲劳问题突出.针对小水线面双体船特殊的结构形式,利用有限元方法对小水线面双体船典型舱段结构应力分布情况进行研究,得到了舱段结构高应力区域所在的位置;对板厚、结构形式、加强方式等影响船体结构节点应力的相关因素进行了详细的比较分析,提出了小水线面双体船典型节点抗疲劳设计方法;并利用该方法对1 350 t典型小水线面双体船进行节点形式优化设计,为小水线面双体船的抗疲劳设计提供参考依据.  相似文献   

16.
以2艘Aframax型油船为例,采用节点细化有限元分析法,对高应力区域进行结构分析,以平面横舱壁水平桁、纵横舱壁相交处大肘板趾端为例,对高应力区域的结构优化方案进行比较,得到的结论可为船体结构设计提供参考。  相似文献   

17.
防风网结构风振疲劳特性研究   总被引:1,自引:0,他引:1  
针对某港实际工程.采用有限元方法对防风网结构在脉动风荷载作用下的动力响应进行分析,并根据瞬态动力分析的结果,找出防风网结构应力疲劳最危险的单元。结合疲劳分析的基本理论,应用雨流法统计最危险单元的应力时程,得到应力循环次数及应力幅大小,根据Miner线性累积损伤准则编写ANSYS的风振疲劳程序.计算得到防风网结构的疲劳寿命。根据实际工程,验证设计风速为26.8m/s持续作用下防风网结构的疲劳寿命。  相似文献   

18.
为解决内压下矩形耐压舱角隅结构应力集中的问题,提出了角隅结构形状优化和拓扑优化的数学模型。采用子模型技术对结构进行精细化静强度应力分析,以角隅边界形状的变化作为设计变量,极小化角隅结构的应力,得到的最佳角隅形状为弧形。在此基础上,极小化角隅结构的应力,对耐压舱角隅肘板进行拓扑优化设计,寻求肘板材料的最优分布和管路铺设的空间,得到了具有内部圆形开孔和去掉三角形尖角的新型肘板结构。弧形角隅形状和开孔新型式的肘板有效地降低了角隅结构的应力集中。建议的方法可为类似结构的优化设计提供参考。  相似文献   

19.
运用 ANSYS APDL 语言编程,对船用高强钢 T 型试件的焊接过程进行了模拟,得到了其焊接残余应力场的分布规律。以预应力的方式将其应力场施加到结构的疲劳寿命计算过程中,得到了结构在焊接残余应力影响下的疲劳寿命。并通过与实验数据进行对比,较为直观地反映焊接残余应力对疲劳寿命的影响。  相似文献   

20.
目前海上风机基础结构存在明显的设计冗余,导致海上风机建造成本过高。为提高经济效益,需要对导管架式海上风机基础结构进行优化设计。该文首先基于海上实测数据对海上风机所处环境载荷进行模拟,得到其时间历程;其次通过有限元方法对平箱梁四桩导管架式海上风机基础结构进行强度校核,发现结构可进行轻量化处理;最后以结构最大平均应力、最大位移和质量为目标响应,通过试验设计(design of experiments, DOE)方法和粒子群算法组合的优化方法,得到结构尺寸对结构目标响应的贡献度和主效应关系,并确定各结构最优尺寸。对海上风机基础结构进行优化设计,能在保证安全的前提下降低建造成本,可为后续海上风机基础结构设计建造提供参数参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号