首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intelligent decision support systems for the real-time management of landing and take-off operations can be very effective in helping air traffic controllers to limit airport congestion at busy terminal control areas. The key optimization problem to be solved regards the assignment of airport resources to take-off and landing aircraft and the aircraft sequencing on them. The problem can be formulated as a mixed integer linear program. However, since this problem is strongly NP-hard, heuristic algorithms are typically adopted in practice to compute good quality solutions in a short computation time. This paper presents a number of algorithmic improvements implemented in the AGLIBRARY solver (a state-of-the-art optimization solver to deal with complex routing and scheduling problems) in order to improve the possibility of finding good quality solutions quickly. The proposed framework starts from a good initial solution for the aircraft scheduling problem with fixed routes (given the resources to be traversed by each aircraft), computed via a truncated branch-and-bound algorithm. A metaheuristic is then applied to improve the solution by re-routing some aircraft in the terminal control area. New metaheuristics, based on variable neighbourhood search, tabu search and hybrid schemes, are introduced. Computational experiments are performed on an Italian terminal control area under various types of disturbances, including multiple aircraft delays and a temporarily disrupted runway. The metaheuristics achieve solutions of remarkable quality, within a small computation time, compared with a commercial solver and with the previous versions of AGLIBRARY.  相似文献   

2.

As air transport demand keeps growing more quickly than system capacity, efficient and effective management of system capacity becomes essential to the operation of the future global air traffic system. Although research in the past two decades has made significant progress in relevant research fields, e.g. air traffic flow management and airport capacity modelling, research loopholes in air traffic management still exist and links between different research areas are required to enhance the system performance of air traffic management. Hence, the objective of this paper is to review systematically current research in the literature about the issue of air traffic management to prioritize productive research areas. Papers about air traffic management are discussed and categorized into two levels: system and airport. The system level of air transport research includes two main topics: air traffic flow management and airspace research. On the airport level, research topics are: airport capacity, airport facility utilization, aircraft operations in the airport terminal manoeuvring area as well as aircraft ground operations research. Potential research interests to focus on in the future are the integration between airspace capacity and airport capacity, the establishment of airport information systems to use airport capacity better, and the improvement in flight schedule planning to improve the reliability of schedule implementation.  相似文献   

3.
The safety of signalized intersections has often been evaluated at an aggregate level relating collisions to annual traffic volume and the geometric characteristics of the intersection. However, for many safety issues, it is essential to understand how changes in traffic parameters and signal control affect safety at the signal cycle level. This paper develops conflict-based safety performance functions (SPFs) for signalized intersections at the signal cycle level. Traffic video-data was recorded for six signalized intersections located in two cities in Canada. A video analysis procedure is proposed to collect rear-end conflicts and various traffic variables at each signal cycle from the recorded videos. The traffic variables include: traffic volume, maximum queue length, shock wave characteristics (e.g. shock wave speed and shock wave area), and the platoon ratio. The SPFs are developed using the generalized linear models (GLM) approach. The results show that all models have good fit and almost all the explanatory variables are statistically significant leading to better prediction of conflict occurrence beyond what can be expected from the traffic volume only. Furthermore, space-time conflict heat maps are developed to investigate the distribution of the traffic conflicts. The heat maps illustrate graphically the association between rear-end conflicts and various traffic parameters. The developed models can give insight about how changes in the signal cycle design affect the safety of signalized intersections. The overall goal is to use the developed models for the real-time optimization of signalized intersection safety by changing the signal design.  相似文献   

4.
Increasing concerns on environment and natural resources, coupled with increasing demand for transport, put lots of pressure for improved efficiency and performance on transport systems worldwide. New technology nowadays enables fast innovation in transport, but it is the policy for deployment and operation with a systems perspective that often determines success. Smart traffic management has played important roles for continuous development of traffic systems especially in urban areas. There is, however, still lack of effort in current traffic management and planning practice prioritizing policy goals in environment and energy. This paper presents an application of a model-based framework to quantify environmental impacts and fuel efficiency of road traffic, and to evaluate optimal signal plans with respect not only to traffic mobility performance but also other important measures for sustainability. Microscopic traffic simulator is integrated with micro-scale emission model for estimation of emissions and fuel consumption at high resolution. A stochastic optimization engine is implemented to facilitate optimal signal planning for different policy goals, including delay, stop-and-goes, fuel economy etc. In order to enhance the validity of the modeling framework, both traffic and emission models are fine-tuned using data collected in a Chinese city. In addition, two microscopic traffic models are applied, and lead to consistent results for signal optimization. Two control schemes, fixed time and vehicle actuated, are optimized while multiple performance indexes are analyzed and compared for corresponding objectives. Solutions, representing compromise between different policies, are also obtained in the case study by optimizing an integrated performance index.  相似文献   

5.
Active Traffic Management (ATM) systems have been emerging in recent years in the US and Europe. They provide control strategies to improve traffic flow and reduce congestion on freeways. This study investigates the feasibility of utilizing a Variable Speed Limits (VSL) system, one key part of ATM, to improve traffic safety on freeways. A proactive traffic safety improvement VSL control algorithm is proposed. First, an extension of the METANET (METANET: A macroscopic simulation program for motorway networks) traffic flow model is employed to analyze VSL’s impact on traffic flow. Then, a real-time crash risk evaluation model is estimated for the purpose of quantifying crash risk. Finally, optimal VSL control strategies are achieved by employing an optimization technique to minimize the total crash risk along the VSL implementation corridor. Constraints are setup to limit the increase of average travel time and the differences of the posted speed limits temporarily and spatially. This novel VSL control algorithm can proactively reduce crash risk and therefore improve traffic safety. The proposed VSL control algorithm is implemented and tested for a mountainous freeway bottleneck area through the micro-simulation software VISSIM. Safety impacts of the VSL system are quantified as crash risk improvements and speed homogeneity improvements. Moreover, three different driver compliance levels are modeled in VISSIM to monitor the sensitivity of VSL effects on driver compliance. Conclusions demonstrated that the proposed VSL system could improve traffic safety by decreasing crash risk and enhancing speed homogeneity under both the high and moderate compliance levels; while the VSL system fails to significantly enhance traffic safety under the low compliance scenario. Finally, future implementation suggestions of the VSL control strategies and related research topics are also discussed.  相似文献   

6.
Adverse weather conditions are hazardous to flight and contribute to re-routes and delays. This has a negative impact on the National Airspace System (NAS) due to reduced capacity and increased cost. In today’s air traffic control (ATC) system there is no automated weather information for air traffic management decision-support systems. There are also no automatic weather decision-support tools at the air traffic controller workstation. As a result, air traffic operators must integrate weather information and traffic information manually while making decisions. The vision in the Next Generation Air Transportation System (NextGen) includes new automation concepts with an integration of weather information and decision-making tools. Weather-sensitive traffic flow algorithms could automatically handle re-routes around weather affected areas; this would optimize the capacity during adverse conditions. In this paper, we outline a weather probe concept called automatic identification of risky weather objects in line of flight (AIRWOLF). The AIRWOLF operates in two steps: (a) derivation of polygons and weather objects from grid-based weather data and (b) subsequent identification of risky weather objects that conflict with an aircraft’s line of flight. We discuss how the AIRWOLF concept could increase capacity and safety while reducing pilot and air traffic operator workload. This could translate to reduced weather-related delays and reduced operating costs in the future NAS.  相似文献   

7.
Traffic congestion and energy issues have set a high bar for current ground transportation systems. With advances in vehicular communication technologies, collaborations of connected vehicles have becoming a fundamental block to build automated highway transportation systems of high efficiency. This paper presents a distributed optimal control scheme that takes into account macroscopic traffic management and microscopic vehicle dynamics to achieve efficiently cooperative highway driving. Critical traffic information beyond the scope of human perception is obtained from connected vehicles downstream to establish necessary traffic management mitigating congestion. With backpropagating traffic management advice, a connected vehicle having an adjustment intention exchanges control-oriented information with immediately connected neighbors to establish potential cooperation consensus, and to generate cooperative control actions. To achieve this goal, a distributed model predictive control (DMPC) scheme is developed accounting for driving safety and efficiency. By coupling the states of collaborators in the optimization index, connected vehicles achieve fundamental highway maneuvers cooperatively and optimally. The performance of the distributed control scheme and the energy-saving potential of conducting such cooperation are tested in a mixed highway traffic environment by the means of microscopic simulations.  相似文献   

8.
Variable speed limit (VSL) is an emerging intelligent transportation system (ITS) measure to improve operational and safety performance of motorway systems. Rule‐based algorithms have been widely used in VSL applications because of their comprehensibility and ease of application. However, most of the algorithms proposed in the literature under this category are rather rough for the speed control. Pre‐specified rules show some difficulties in appropriately activating/deactivating control actions in real time because of non‐stationary and nonlinear nature of the traffic system. This paper proposes a fuzzy logic‐based VSL control algorithm as an alternative to the existing VSL control algorithms. The proposed algorithm uses fuzzy sets instead of crisp sets to allow the separation of attribute domains into several overlapping intervals. The discretization using fuzzy sets can help to overcome the sensitivity problem caused by crisp discretization used in the existing VSL algorithms. The proposed algorithm is assessed for a test bed in Auckland using AIMSUN micro‐simulator and verified against a well‐known VSL algorithm. The simulation results show that the proposed algorithm outperforms the existing one to improve the efficiency performance of the motorway system with the critical bottleneck capacity increased by 6.42% and total travel time reduced by 12.39% when compared to a no‐control scenario. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

Congestion at motorway junctions is a traffic phenomenon that degrades operation of infrastructure and can lead to breakdown of traffic flow and associated reduction in capacity. Advanced communication technologies open new possibilities to prevent or at least delay this phenomenon, and innovative active traffic management systems have been developed in the recent years for better control of motorway traffic. This paper presents a review of control strategies for facilitating motorway on-ramp merging using intelligent vehicles. First, the concepts of the control algorithms are reviewed chronologically divided into three types of intelligent vehicle: completely automated, equipped with cooperative adaptive cruise control and equipped with on-board display. Then, a common structure is identified, and the algorithms are presented based on their characteristics in order to identify similarities, dissimilarities, trends and possible future research directions. Finally, using a similar approach, a review of the methods used to evaluate these control strategies identifies important aspects that should be considered by further research on this topic.  相似文献   

10.
Under the Connected Vehicle environment where vehicles and road-side infrastructure can communicate wirelessly, the Advanced Driver Assistance Systems (ADAS) can be adopted as an actuator for achieving traffic safety and mobility optimization at highway facilities. In this regard, the traffic management centers need to identify the optimal ADAS algorithm parameter set that leads to the optimization of the traffic safety and mobility performance, and broadcast the optimal parameter set wirelessly to individual ADAS-equipped vehicles. Once the ADAS-equipped drivers implement the optimal parameter set, they become active agents that work cooperatively to prevent traffic conflicts, and suppress the development of traffic oscillations into heavy traffic jams. Measuring systematic effectiveness of this traffic management requires am analytic capability to capture the quantified impact of the ADAS on individual drivers’ behaviors and the aggregated traffic safety and mobility improvement due to such an impact. To this end, this research proposes a synthetic methodology that incorporates the ADAS-affected driving behavior modeling and state-of-the-art microscopic traffic flow modeling into a virtually simulated environment. Building on such an environment, the optimal ADAS algorithm parameter set is identified through a multi-objective optimization approach that uses the Genetic Algorithm. The developed methodology is tested at a freeway facility under low, medium and high ADAS market penetration rate scenarios. The case study reveals that fine-tuning the ADAS algorithm parameter can significantly improve the throughput and reduce the traffic delay and conflicts at the study site in the medium and high penetration scenarios. In these scenarios, the ADAS algorithm parameter optimization is necessary. Otherwise the ADAS will intensify the behavior heterogeneity among drivers, resulting in little traffic safety improvement and negative mobility impact. In the high penetration rate scenario, the identified optimal ADAS algorithm parameter set can be used to support different control objectives (e.g., safety improvement has priority vs. mobility improvement has priority).  相似文献   

11.
12.
An aggregate air traffic flow model based on a multicommodity network is used for traffic flow management in the National Airspace System. The problem of minimizing the total travel time of flights in the National Airspace System of the United States, subject to sector capacity constraints, is formulated as an Integer Program. The resulting solution achieves optimal delay control. The Integer Program implemented for the scenarios investigated has billions of variables and constraints. It is relaxed to a Linear Program for computational efficiency. A dual decomposition method is applied to solve the large scale Linear Program in a computationally tractable manner. A rounding algorithm is developed to map the Linear Program solution to a physically acceptable result, and is implemented for the entire continental United States. A 2-h traffic flow management problem is solved with the method.  相似文献   

13.
The constant increase in air traffic demand increases a probability of the separation minima infringements in certain areas as a consequence of increased traffic density. The Annual Safety Report 2016 reports that in recent years the number of infringements, measured per million flight hours, had been increased at a lower rate (Eurocontrol, 2018). However, this level of infringements still generates a continuous pressure on the air traffic control (ATC) system and seeks for more control resources ready to tactically solve potential conflicts, while increasing at the same time the operational costs. Considering present air traffic management (ATM) trade-off criteria: increased airspace capacity and traffic efficiency but reducing the cost while preserving safety, new services must be designed to distribute the separation management ATC task loads among other actors. Based on the Single European Sky Air Traffic Management Research and Next Generation Air Transportation System initiatives, this paper proposes an innovative separation management service to shift the completely centralized tactical ATC interventions to more efficient decentralized tactical operations relying on an advanced surrounding traffic analysis tool, to preserve the safety indicators while considering the operational efficiency. A developed methodology for the proposed service is an application-oriented, trying to respond to characteristics and requirements of the current operational environment. The paper further analysis the traffic complexity taking into consideration the so-called domino effect, i.e. a number of the surrounding aircraft causally involved in the separation management service by the means of identification of the spatiotemporal interdependencies between them and the conflicting aircraft. This complexity is driven by the interdependencies structure and expressed as a time-criticality in quantifying the total number of the system solutions, that varies over time as the aircraft are approaching to each other. The results from two randomly selected ecosystem scenarios, extracted from a simulated traffic, illustrate different avoidance capacities for a given look-ahead time and the system solutions counts, that in discrete moments reach zero value.  相似文献   

14.
Aircraft mass is a crucial piece of information for studies on aircraft performance, trajectory prediction, and many other topics of aircraft traffic management. However, It is a common challenge for researchers, as well as air traffic control, to access this proprietary information. Previously, several studies have proposed methods to estimate aircraft weight based on specific parts of the flight. Due to inaccurate input data or biased assumptions, this often leads to less confident or inaccurate estimations. In this paper, combined with a fuel-flow model, different aircraft initial masses are computed independently using the total energy model and reference model at first. It then adopts a Bayesian approach that uses a prior probability of aircraft mass based on empirical knowledge and computed aircraft initial masses to produce the maximum a posteriori estimation. Variation in results caused by dependent factors such as prior, thrust and wind are also studied. The method is validated using 50 test flights of a Cessna Citation II aircraft, for which measurements of the true mass were available. The validation results show a mean absolute error of 4.3% of the actual aircraft mass.  相似文献   

15.
Recently, there has been a growing interest in externalities in our society, mainly in the context of climate and air quality, which are of importance when policy decisions are made. For the assessment of externalities in transport, often the output of static traffic assignment models is used in combination with so-called effect models. Due to the rapidly increasing possibilities of using dynamic traffic assignment (DTA) models for large-scale transportation networks and the application of traffic measures, already several models have been developed to assess the externalities using DTA models more precisely. Different research projects have shown that there is a proven relation between the traffic dynamics and externalities, such as emissions of pollutants and traffic safety. This means that the assessment of external effects can be improved by using temporal information about flow, speed and density, which is the output of DTA models. In this paper, the modelling of traffic safety, emissions and noise in conjunction with DTA models is reviewed based on an extensive literature survey. This review shows that there are still gaps in knowledge in assessing traffic safety, much research is available concerning emissions, and although little research has been conducted concerning the assessment of noise using DTA models, the methods available can be used to assess the effects. Most research so far has focused on the use of microscopic models, while mesoscopic or macroscopic models may have a high potential for improving the assessment of these effects for larger networks.  相似文献   

16.
智能交通系统是一个高科技集成系统,它综合运用各种高新技术于整个交通管理系统之中,可以系统、全面、高效地提高交通运输的安全性.文章阐述了智能交通系统在交通安全中的作用及在福州市的应用情况,指出了福州市发展智能交通的方向,以提高福州市的交通安全管理水平.  相似文献   

17.
This paper estimates the benefits, in terms of fuel and time, which continuous climb operations can save during the cruise phase of the flights, assuming maximum range operations. Based on previous works, a multiphase optimal control problem is solved by means of numerical optimization and using accurate aircraft performance data from the manufacturer. Optimal conventional trajectories (subject to current air traffic management practices and constraints) are computed and compared with ideal continuous operations only subject to aircraft performance constraints. Trip fuel and time for both concepts of operations are quantified for two aircraft types (a narrow-body and a wide-body airplane) and a representative set of different trip distances and landing masses. Results show that the continuous cruise phase can lead to fuel savings ranging from 0.5% to 2% for the Airbus A320, while for an Airbus A340 the dispersion is lower and savings lie in between 1% and 2%. Interestingly, trip time is also reduced between 1% and 5%.  相似文献   

18.
Traffic signal control for urban road networks has been an area of intensive research efforts for several decades, and various algorithms and tools have been developed and implemented to increase the network traffic flow efficiency. Despite the continuous advances in the field of traffic control under saturated conditions, novel and promising developments of simple concepts in this area remains a significant objective, because some proposed approaches that are based on various meta-heuristic optimization algorithms can hardly be used in a real-time environment. To address this problem, the recently developed notion of network fundamental diagram for urban networks is exploited to improve mobility in saturated traffic conditions via application of gating measures, based on an appropriate simple feedback control structure. As a case study, the proposed methodology is applied to the urban network of Chania, Greece, using microscopic simulation. The results show that the total delay in the network decreases significantly and the mean speed increases accordingly.  相似文献   

19.
Accurate prediction of aircraft position is becoming more and more important for the future of air traffic. Currently, the lack of information about flights prevents us to fulfill future demands for the needed accuracy in 4D trajectory prediction. Until we get the necessary information from aircraft and until new more accurate methods are implemented and used, we propose an alternative method for predicting aircraft performances using machine learning from historical data about past flights collected in a multidimensional database. In that way, we can improve existing applications by providing them better inputs for their trajectory calculations. Our method uses flight plan data to predict performance values, which are suited individually for each flight. The results show that based on recorded past aircraft performances and related flight data we can effectively predict performances for future flights based on how similar flights behaved in the past.  相似文献   

20.
In an earlier work, Sun and Bayen built a Large-Capacity Cell Transmission Model for air traffic flow management. They formulated an integer programming problem of minimizing the total travel time of flights in the National Airspace System of the United States subject to sector capacity constraints. The integer program was relaxed to a linear program for computational efficiency. In this paper the authors formulate the optimization problem in a standard linear programming form. We analyze the total unimodular property of the constraint matrix, and prove that the linear programming relaxation generates an optimal integral solution for the original integer program. It is guaranteed to be optimal and integral if solved by a simplex related method. In order to speed up the computation, we apply the Dantzig–Wolfe Decomposition algorithm, which is shown to preserve the total unimodularity of the constraint matrix. Finally, we evaluate the performances of Sun and Bayen’s relaxation solved by the interior point method and our decomposition algorithm with large-scale air traffic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号