首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
崇启大桥主桥采用(102+4×185+102)m六跨变截面钢箱连续梁桥,主桥钢箱梁最高达9 m.在该桥高腹板设计过程中,对国内、外相关标准和规范进行研究,制定高腹板结构设计和验算思路.腹板在顺桥向不同区段采用4种不同的板厚,在箱梁内侧保持平齐.腹板横肋纵向间距1.4m,加劲肋均采用T形构造;腹板纵肋采用扁钢构造.墩顶附近梁段靠近底板的腹板纵肋与横肋焊接,其余部位腹板纵肋在横肋处断开.按照规范方法对腹板强度、最小厚度及纵肋设置位置合理性、纵肋刚度、横肋间距和刚度、区格局部稳定性进行验算,并采用ANSYS建立半桥板单元模型,对腹板强度和局部稳定性进行校核,结果表明,腹板设计满足规范要求.  相似文献   

2.
贵州两渡水湘江大桥主桥为(72+120+72) m波形腹板钢槽组合梁大跨变截面连续刚构桥。针对传统波形钢腹板组合箱梁桥底板混凝土结构自重仍然偏大、底板易开裂、下翼缘混凝土与波形钢腹板易脱离等问题,该桥主梁采用自重轻、底板抗裂能力强的波形腹板钢槽组合梁结构。主梁顶板宽20.25 m,单箱双室变截面。为解决组合梁根部钢底板受力复杂、抗压稳定性差的难题,在负弯矩区组合梁钢底板上设置混凝土层,形成顶、底板双重组合结构。为提高混凝土桥面板和钢主梁之间的抗剪承载力、有效防止桥面板横向角隅弯矩导致的竖向掀起问题,剪力连接件采用开孔钢板的双PBL键。主梁墩顶0号块采用全混凝土结构,钢-混结合段采用后承压式构造。主梁横隔板采用实腹式和桁架式两种结构形式,在提高结构抗畸变和抗扭转能力的同时,大幅降低了工程用钢量。主墩采用壁厚1.8 m的双肢实体薄壁墩。结构整体和局部计算分析表明,桥梁具有较好的安全性和适应性。  相似文献   

3.
多箱室宽箱梁顶板作为直接承受外部荷载的主要结构,受力复杂,常常需要对其进行考虑框架效应影响的横向计算,必要时采用实体有限元分析。运用ANSYS建立箱梁局部实体有限元模型,主要研究了梁截面参数对顶板受力性能的影响,如梁高、腹板斜率、腹板厚度、底板厚度、箱室布置及横向预应力间距等等。结果表明:箱室布置是箱梁顶板受力性能优劣的决定因素;其次合理的预应力间距布置能极大改善顶板受力性能;梁高、腹板厚、底板厚对顶板受力性能影响较小,且其值增加为有利影响;腹板斜率对顶板受力几乎无影响。  相似文献   

4.
通过工程实例介绍某折腹式组合箱梁桥的结构体系以及钢腹板与混凝土顶底板、横隔梁的连接等设计构造要点,并通过空间有限元计算研究该组合箱梁顶板、底板以及腹板的应力分布,连接部位受力性能等,为该新型结构设计施工提供参考依据.  相似文献   

5.
波形钢腹板PC组合梁采用顶推施工时,其箱梁底板要连续不断在支墩上滑动,箱梁局部在顶推过程中的受力与成桥状态有较大不同。为了明确组合箱梁波形钢腹板在顶推施工中的局部受力性能,以国内一座采用整体式顶推施工的大跨度波形钢腹板PC组合梁为例,采用板壳实体模型详细模拟了混凝土顶底板与波形钢腹板的真实结构,计算在顶推过程中组合箱梁的局部受力性能。比较了不同构造形式下的结构受力性能,为设计计算同类桥梁的局部结构提供了参考。  相似文献   

6.
李家河桥为湖南省第一座波形钢腹板组合箱梁桥,该文介绍了该桥波形钢腹板组合箱梁桥横断面形式、横隔板构造、波形钢腹板形状、预应力体系以及波形钢腹板与顶、底板连接形式等结构的设计方法,并讨论了该组合结构的计算方法。  相似文献   

7.
波形钢腹板组合箱梁桥是一种造型美观、受力合理的新型钢-混凝土组合结构,以某波形钢腹板PC组合箱梁跨线桥为背景,介绍了该桥的主梁整体设计、波形钢腹板构造设计、顶底板连接键设计计算,并按施加一期荷载、张拉体外预应力钢束、施加二期恒载、施加活载等施工及营运流程进行波形钢腹板预应力混凝土组合桥梁的上部结构顶底板混凝土应力、波形钢腹板应力及结构刚度(挠度)的有限元静力分析计算,验算其是否符合现行规范要求,为今后类似工程计算提供参考.  相似文献   

8.
全比例波形钢腹板PC箱梁力学特性试验研究   总被引:4,自引:0,他引:4  
根据国内第一座波形钢腹板PC组合箱梁公路桥-泼河大桥的箱梁构造尺寸,设计了30 m足尺试验梁,对其力学性能进行了试验研究和有限元分析。测试了箱梁挠度,波形钢腹板、混凝土顶板及底板的应变。研究结果表明,波形钢腹板PC组合箱梁的混凝土顶板和底板主要承担弯矩,波形钢腹板则主要承担剪力。试验结果为实桥的设计和建造提供了重要的资料。  相似文献   

9.
为研究带挑梁钢箱组合梁的合理构造形式,对两种常用的带挑梁钢箱组合梁腹板加劲形式的构造特点、传力路径、受力特性、施工要点等进行了理论分析与对比,并采用板单元有限元模型进行了对比分析。分析表明,对应于挑梁底板设置内撑加劲肋比设置腹板通长纵肋的传力路径更清晰、腹板面外变形更小、挑梁应力峰值也更小,是更合理的带挑梁钢箱组合梁的腹板加劲构造形式。  相似文献   

10.
为研究波形钢腹板组合箱梁的变形特点,以山东鄄城黄河公路大桥为工程依托,基于桥梁结构分析软件GQJS采用了两种单元离散方式进行该桥的施工过程分析。方法1简称"1节点法",即顶底板混凝土和中间钢腹板单元共用节点,顶底板挠曲变形符合平截面假定,并用平钢板代替波形钢腹板,为考虑波形钢腹板褶皱效应,将波形钢板Q345钢材的弹性模量按轴向刚度等效的方法进行折减。方法2简称"2节点法",即顶底板混凝土单元节点独立,由钢腹板连接顶底板单元,顶底板挠曲变形不符合平截面假定,可以有相对位移,波形钢腹板控制上下节点相对位移。研究结果表明:采用1节点法和2节点法所得变形计算结果相差不大,并且都与实测结果相吻合,证明这两种单元离散方式均是可行的。  相似文献   

11.
在波形钢腹板组合结构桥梁中,剪力键是保证钢腹板与顶、底板混凝土共同工作的关键传力构件。随着建设的发展,越来越多的桥梁面临着高烈度地震的考验,但动力作用下组合结构剪力键的受力研究还比较少。本文通过采用数值模拟的方式,分析罕遇地震作用下钢腹板与顶、底板混凝土之间剪力键的受力特点,并总结出力学规律,为该类结构物的安全使用提供理论依据。  相似文献   

12.
1 概 述 箱梁模板设计,必须根据箱梁的结构、形状、尺寸等参数及其变化进行,为此先介绍大桥概况。 衡阳湘江公路大桥是预应力混凝土变截面连续梁桥。主桥为55.5m+3×85m+55.5m,桥宽22.5m,其中车道宽18m。上部构造断面型式为单箱三室,箱梁顶面横向坡度1.5%,纵向坡度2.5%。 0块断面构造见图1,1至12块断面见图2。 箱梁采用悬臂浇筑施工,其腹板、底板厚变化及分块见图3。2 定型组合钢模板简介  相似文献   

13.
为研究波形钢腹板PC连续梁桥在异步悬臂施工不同工序下的受力性能及施工工期,以主桥长360m的奉化江大桥为背景,采用有限元软件建立该桥箱梁的1~4号节段模型,分析按不同顺序浇筑箱梁顶、底板混凝土,吊装波形钢腹板时箱梁结构受力,并比较所需工期。结果表明:异步悬臂施工时,PC梁箱室中间小部分顶板混凝土处于受拉状态;波形钢腹板位移变化较大。若仅考虑结构受力,先浇筑前一节段顶板,再浇筑本节段底板,最后吊装后一节段波形钢腹板的方案施工期间挠度最小,受力最优;若综合考虑结构受力性能和施工周期的影响,同时浇筑前一节段顶板和本节段底板,最后吊装后一节段波形钢腹板的施工工序最优。  相似文献   

14.
波纹钢腹板组合箱梁的抗剪受力性能   总被引:9,自引:0,他引:9  
以某跨径为40 m的波纹钢腹板预应力组合梁桥为原型,根据相似理论设计制作了缩尺模型试验梁。通过测试模型梁在静力荷载作用下的挠度和应变,研究了该桥型的抗剪受力性能。采用有限元方法研究了波纹钢腹板的整体尺寸、波纹板厚度、波折角度、波纹板高度和平板宽度等对波纹钢腹板构件非线性剪切屈曲性能的影响。另外,对Hamilton所做的波纹钢腹板剪切屈曲试验结果进行了回归分析,给出了波纹钢腹板局部屈曲强度的半经验半理论计算公式。结果表明:混凝土顶板和底板承担了大部分弯矩,波纹钢腹板主要承担剪力,且剪力沿波纹板高度方向均匀分布。  相似文献   

15.
为了研究波形钢腹板箱梁桥异步施工过程中结构的受力性能,验证各关键部位的安全性,以奉化江大桥主桥为背景,针对该桥异步施工过程中的受力最不利工况——主梁16号节段的底板浇筑工况设计制作足尺模型(长7.2m、宽2.3m),采用两点加载方式进行静载试验,研究施工荷载作用下梁体挠度、波形钢腹板侧向变形、波形钢腹板及钢翼缘板的应力分布。结果表明:施工荷载作用下,混凝土顶、底板均未出现裂缝,波形钢腹板剪应力远小于其抗剪强度设计值,波形钢腹板自承重异步施工可满足结构受力要求,具有足够的安全储备;波形钢腹板作为自承重结构在竖向荷载作用下产生的竖向挠度及侧向变形较大;波形钢腹板上翼缘板挂篮作用点处为结构受力关键部位,施工时应对其进行局部加强。  相似文献   

16.
《公路》2017,(4)
波形钢腹板箱梁由于腹板的皱褶效应,顶、底板与腹板不服从平截面假定。为此,顶板、底板采用空间体单元,腹板采用空间壳单元模拟,精确模拟腹板与顶板、底板的连接。考虑施工过程定义,考虑横向预应力和纵向预应力的影响,考虑施工期挂篮对波形钢腹板箱梁底板的作用,开展了从零号块至最大悬臂状态的波形钢腹板施工过程分析。分析结果显示,空间精细化模型的位移计算结果与一般梁单元采用增量有限元算法得到的规律类似。原始挂篮底模后吊点处会出现应力集中现象。通过改变挂篮后吊点施工方案,可降低应力集中导致的混凝土开裂风险。同时提出了在箱梁纵向一些底板开裂风险较大部位增设防裂网片,抑制施工期波形钢腹板底板裂缝扩展。  相似文献   

17.
针对斜拉桥中采用的双箱式主梁,改变斜拉桥箱形主梁的底板厚度、斜腹板厚度以及斜腹板倾斜角度,利用结构有限元分析程序ANSYS,对不同情况下的箱形主梁建立了有限元模型。考虑到梁段以外附近区域的作用,在其两端截面上施加了由平面杆系结构分析所得的端面内力,另外,索力和预加力(梁纵向、横隔梁横向、斜腹板竖向)也施加在相应的位置,分析了不同工况下箱形主梁在自重、索力和预应力作用下的空间应力效应。给出了斜拉桥箱形主梁的底板厚度、斜腹板厚度及斜腹板倾斜角度的合理化建议。分析表明:当底板厚度为30 cm左右,斜腹板厚度为30cm左右,斜腹板倾斜角度为150°~152°时,主梁的应力分布比较合理。  相似文献   

18.
为了了解波形钢腹板变截面连续体系梁桥钢腹板的弯曲剪应力及剪力传递效率,基于组合有限元思想,采用有限元软件建立大桥精细模型,首先对组合箱梁拟平截面假定进行验证,然后选取12个控制截面,分析自重、自重+预应力荷载作用下各控制截面的波形钢腹板剪应力及剪力传递效率。计算结果表明:弯曲作用下变截面波形钢腹板组合箱梁截面满足平截面假定,波形钢腹板中的剪应力沿板厚均匀分布,自重及预应力作用下变截面波形钢腹板组合截面的剪力传递效率为50%~80%,且变截面效应带来的梁高和底板厚变化会使波形钢腹板参数相同的梁段剪力分配比例有明显变化。  相似文献   

19.
地约科1号大桥位于云南省墨江至临沧高速公路上,主桥为72+125+72m波形钢腹板预应力混凝土连续刚构桥,上部结构采用单箱单室截面。波形钢腹板与混凝土顶板连接采用双开口板翼缘型结合部,与混凝土底板采用外包型结合部,外包型结合部包括焊钉、小开孔板、小纵板三部分,为本桥首创的连接构造形式,可大大提高的连接可靠性和耐久性,并在中跨合龙段附近加设矮隔板改善径向力作用下混凝土底板应力。主桥采用悬臂异步浇筑工法,并对该工法进行了合理优化,提高了施工效率和安全性。  相似文献   

20.
转向块是波形钢腹板组合梁桥最重要的传力构件之一,其受力复杂,易成为结构设计的薄弱点。采用空间有限元实体模拟的方法,对转向块在实际工作中的应力分布特点和规律进行研究。结果表明,竖向拉应力由底板连接处向中部逐渐减小,是设计的控制因素;当预应力管道距离底板较近时,管道下缘的应力不能充分扩散,会产生明显的应力集中,对设计很不利;转向块与顶底板连接处的倒角对应力扩散效果显著;主拉应力具有使转向块从梁体内脱离的倾向,两者之间应加强钢筋连接;转向块可采用上薄下厚、半高度等构造形式及钢结构材料等方式来实现轻型化设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号