首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
重庆寸滩长江大桥主桥为250m+880m+250m的单跨简支钢箱梁悬索桥。该桥设2根主缆,主缆采用预制平行高强钢丝索股结构。全桥共布置57对吊索,吊索采用预制平行钢丝束,与索夹采用销接式连接方式。主索鞍为全铸式结构,鞍底设置座板作为滑动副。散索鞍为底座式结构,底部设置柱面钢支座。主缆锚固系统采用型钢锚固系统。加劲梁采用流线型扁平式封闭钢箱梁,梁高3.5m,宽42m。南、北锚碇均为重力式锚碇,现浇扩大基础,锚体在平面均呈U形。桥塔为钢筋混凝土门式框架结构,两塔柱竖直布置,基础为分离式承台桩基础。  相似文献   

2.
重庆几江长江大桥主桥为176m+600m+140m的单跨悬吊钢箱梁悬索桥。全桥共布置2根主缆,主缆采用预制平行钢丝索股结构、新型缠包带除湿防护体系、预应力钢束锚固系统。主缆与加劲梁间共设49对吊索,吊索采用预制平行钢丝束股,其上、下端连接方式均为销接式。主索鞍鞍体采用全铸型结构,散索鞍鞍体采用铸焊结合的结构。加劲梁采用流线型扁平钢箱梁,梁高3m、宽33m。南锚碇采用重力式锚碇,沉井基础;北锚碇位于软岩区,采用型钢加劲复合式隧道锚碇。桥塔采用钢筋混凝土框架结构,基础采用分离式承台钻孔桩基础。  相似文献   

3.
综合考虑防洪、通航、港口等建设条件限制,棋盘洲长江公路大桥主桥采用主跨1 038 m的单跨钢箱梁悬索桥,一跨跨越长江。该桥加劲梁采用扁平流线型钢箱梁;桥塔采用门形混凝土塔,桥塔基础采用分离式承台+大直径群桩;南、北重力式锚碇分别采用圆形地下连续墙基础和扩大基础,锚碇锚固系统采用无粘结预应力锚固系统;主缆采用标准抗拉强度1 860 MPa的预制平行钢丝索股(PPWS法施工),吊索采用标准抗拉强度1 670 MPa的平行钢丝索股(PWS法施工)外套双层PE防护。设计过程中通过研究地下连续墙重力式复合锚碇基础受力特点和渗流规律,优化了南锚碇工程规模;提出基于频遇组合确定主梁纵向挡块间隙量的计算方法,有效减小了伸缩装置规格;分析正交异性钢桥面板疲劳性能影响因素并进行优化设计,提升了桥面板综合性能。  相似文献   

4.
贵港市同济大桥主桥为主跨280m的自锚式悬索桥,桥跨布置为(50+140+280+140+50)m,桥面宽37.5m。悬吊跨主梁为单箱多室钢箱梁,采用顶推法施工,最大顶推跨径2×85m。两端锚跨采用预应力混凝土结构。桥塔采用独柱式"荷花"造型,桥面以上塔柱不设置横梁,横向呈"H"形框架结构,景观造型新颖美观,桥塔结构最小稳定安全系数6.4。主缆采用预制平行钢丝索股,钢丝抗拉强度标准值为1 670 MPa,主缆强度安全系数2.71大于2.5,满足规范要求;吊索及索夹为销接式结构,主索鞍为全铸式结构,鞍底与底座座板间设滑动摩擦副。  相似文献   

5.
葫芦口大桥主桥为(158+656+145)m的单跨双铰钢桁梁悬索桥。该桥设2根主缆,主缆采用预制平行高强钢丝索股结构。全桥共布置71对吊索,吊索采用预制平行钢丝束,与索夹采用销轴连接方式。主索鞍为全铸式结构,鞍底设置滑动副。散索鞍为底座式结构,下设滚轴支座。主缆锚固系统采用型钢锚固系统。加劲梁采用钢桁梁,桁高4.5m,宽17m,采用钢混组合桥面系。两岸锚碇均采用重力式锚、现浇扩大基础,其中巧家侧锚碇采用明挖嵌岩基础。桥塔为钢筋混凝土门式框架结构,塔柱竖直布置,基础采用直径2.5m的钻孔灌注桩。采用有限元软件BNLAS及MIDAS对该桥进行计算分析,结果表明该桥的静力、动力特性均满足规范要求。  相似文献   

6.
武西高速桃花峪黄河大桥主桥施工方案   总被引:2,自引:0,他引:2  
桃花峪黄河大桥主桥为双塔三跨自锚式悬索桥,跨度布置为(160+406+160)m。桥塔为门式混凝土结构,加劲梁为流线型钢箱梁,主缆采用高强镀锌钢丝预制平行索股。结合该桥主体结构特点和桥位处施工条件,桩基采用旋挖钻机与回旋钻机结合施工,水中承台采用钢管桩围堰施工,岸边承台采用大开挖配合深井降水施工;塔柱采用液压自升式爬模施工,塔柱上横梁采用托架法施工,下横梁采用支架法施工;上部结构采用先梁后缆顺序施工,加劲梁利用单向多点顶推计算机控制系统进行各点同步顶推施工,与钢锚梁合龙后采用PPWS法施工主缆,主缆完成体系转换后进行桥面系施工。  相似文献   

7.
松原市天河大桥北汊主桥为(40+100+266+100+40)m双塔空间索面自锚式悬索桥,桥塔采用钢筋混凝土人字形结构,主梁分为混凝土加劲梁以及钢-混组合梁(由格构式钢梁上铺混凝土桥面板组成)两部分,主缆呈空间三维线形,全桥共51对吊索。桥塔采用液压自爬模施工,通过设置主动支撑以及预偏量控制塔身倾斜度;格构式钢梁采用以直代曲制作,边跨钢梁采用吊机原位吊装,中跨钢梁采用拼装平台上整节段拼装牵引滑移施工;主缆锚固系统位于加劲梁锚墩横梁上,采用厂内预制现场整体吊装施工;主缆架设采用PPWS施工方法,猫道采用预制吊装施工;针对可转动索夹以及球铰底座的特点,改变传统的体系转换临时吊索的使用顺序,达到吊索一次张拉成型。  相似文献   

8.
南宁英华大桥为45 m+410 m+45 m单主缆钢箱梁悬索桥。该桥设置单主缆,主缆采用预制平行高强钢丝索股结构。全桥共布置40对吊索,均采用预制平行钢丝束。主索鞍采用全铸造结构,塔顶设有格栅底座。该桥采用散索套散开主缆,通过结构优化,有效解决了采用传统散索套所带来的索股不稳定及难以架设的技术难题。主缆锚固采用钢拉杆锚固系统,锚固方式为无粘接后锚承压式。主塔为曲面桥塔,采用文物"羊角钮编钟"作为造型元素,下塔柱为预应力混凝土结构,上塔柱为钢结构。主梁采用扁平流线型钢箱梁,全宽37.7 m,中心高3.5 m。锚碇均为重力式锚碇,由于本桥为单主缆结构,因此两岸均只在引桥正下方设1个锚碇。  相似文献   

9.
江苏省芜申线航道泓口大桥主桥为(52+102+52)m自锚式悬索桥.该桥加劲梁采用预应力混凝土边箱梁形式,在支架上现浇施工;桥塔采用钢筋混凝土矩形实心截面柱式结构,桥塔高27.902m,下部采用整体式哑铃形承台;主缆采用Φ4.8 mm镀锌高强钢丝,吊索采用φ7 mm镀锌高强平行钢丝,鞍座为整体铸造结构.采用有限元软件MIDAS Civil 2010和悬索桥非线性分析软件BNLAS建立全桥有限元模型进行计算分析,计算结果表明泓口大桥结构的应力均能满足规范要求.  相似文献   

10.
重庆市鹅公岩轨道大桥位于既有鹅公岩大桥上游70m处,主桥采用(50+210+600+210+50)m半飘浮体系自锚式悬索桥。加劲梁采用钢箱-混凝土混合梁,中跨及边跨为钢箱梁,锚跨及锚固段为混凝土箱梁。桥塔采用门形结构,按全截面受压构件设计。主缆采用PPWS平行钢丝索股,布置为平行双缆面,中心距为19.5m。全桥边、中跨均设吊索,吊索采用PSS平行钢丝束,上端与主缆索夹采用销铰式连接,下端与加劲梁采用锚箱承压方式连接。2个桥塔单幅承台下均布置9根3.0m钻孔灌注桩。通过在主缆锚固横梁上增设竖向隔板和水平隔板将锚固箱室分成4个小舱室,以优化锚固横梁受力。对该桥总体及局部稳定进行分析,结果表明:桥梁总体及局部稳定均满足相关规范的要求。由于建设条件的限制,该桥开创性地运用"先斜拉后悬索"的方案施工。  相似文献   

11.
G3铜陵长江公铁大桥主桥为主跨988 m的斜拉-悬索协作体系桥,公铁上、下分层布置,上层通行6车道高速公路,下层通行4线铁路。主缆平面布置,垂跨比为1/6.5,横向中心距34.7 m,纯悬吊段长331 m,标准抗拉强度2 000 MPa;斜拉索与吊索交叉索共6对,交叉区斜拉索和吊索交错锚固于主梁上。主梁采用钢桁梁,桁高13.5 m,桁宽35 m。桥塔为门形钢筋混凝土结构,合肥侧、铜陵侧塔高分别为228.5、222.5 m。斜拉索采用■7 mm高强平行钢丝索,呈扇形布置,标准抗拉强度2 000 MPa;吊索采用■7 mm高强平行钢丝索,平面布置,标准抗拉强度1 770 MPa。2个桥塔墩均采用钻孔桩基础。合肥侧锚碇采用复合式地下连续墙基础,铜陵侧锚碇采用复合板桩嵌岩扩大基础。理论分析和试验研究表明大桥具有良好的静、动力性能,能够满足高速铁路行车要求。  相似文献   

12.
龙江大桥主桥为主跨1 196m的双塔单跨简支钢箱加劲梁悬索桥,大桥主缆分跨布置为320m+1 196m+320m。加劲梁采用流线型扁平钢箱结构,桥面宽33.5m;两岸桥塔采用门形混凝土结构,塔底设钻孔灌注桩基础;保山岸桥塔总高169.688m,腾冲岸桥塔总高129.703m;两岸采用重力式锚碇和扩大基础;主缆采用强度1 770MPa、5.25mm的镀锌平行钢丝索股;吊索采用强度1 670MPa、52mm的钢芯钢丝绳。采用ANSYS计算软件,对主桥结构进行了总体静力计算,结果表明桥梁各主要构件的最不利内力及位移均满足规范要求,为该桥的设计提供了依据。  相似文献   

13.
曹娥江步行桥为(35+37.5+100+37.5+35)m混合梁自锚式悬索桥,半飘浮约束体系,桥面总宽7.5 m。全桥设置2根主缆,主缆采用锌铝合金镀层钢丝,抗拉强度1960 MPa。吊索采用环氧涂层预应力钢绞线,抗拉强度1860 MPa。主跨、边跨加劲梁为钢箱梁,锚固跨为预应力混凝土箱梁。桥塔为有上、下横梁的框架式混凝土结构,基础采用大直径嵌岩桩。桥梁采用“先梁后缆”的施工顺序,体系转换采用无应力状态控制法。主索鞍采用预偏技术施工,有效控制桥塔弯矩,保证结构安全。  相似文献   

14.
张家港市镇山大桥主桥为50 m+120 m+50 m自锚式悬索桥.该桥加劲梁采用预应力混凝土边箱形式,在支架上现浇施工;桥塔采用钢筋混凝土矩形截面实心柱式结构,塔高40.63 m,塔下采用整体式哑铃型承台;主缆采用φ5mm镀锌高强平行钢丝束,吊索采用φ7mm镀锌高强平行钢丝束,索架、鞍座为整体铸造钢结构.采用有限元软件MIDAS Civil 2010建立全桥模型进行总体计算,采用有限元软件MIDAS FEA建立主缆锚固区的实体模型进行局部分析,结果表明镇山大桥的结构应力均能满足规范要求.  相似文献   

15.
冯传宝 《桥梁建设》2020,50(1):99-104
五峰山长江大桥主桥为主跨1092 m的钢桁梁公铁两用悬索桥,加劲梁采用板桁结合钢桁梁,主缆采用预制平行高强钢丝索股结构,直径1.3 m。边跨加劲梁采用支架顶推法施工,中跨加劲梁采用缆载吊机由跨中向两侧对称架设,并在中跨侧靠近桥塔位置处合龙;主缆采用平行钢丝索股法架设。主缆制造时,采用无应力长度法计算各索股的无应力下料长度,并在主缆锚固区每处预留长度为±26 cm的垫板空间;主缆架设时,采用4根索股作为基准索股进行架设线形控制,并将主缆长度误差控制在-18~30 cm,均在误差控制范围内;加劲梁施工时,通过分析各因素对加劲梁线形的影响规律,提出控制二期恒载的措施;加劲梁合龙时,采取中跨钢梁不动、起顶边跨钢梁的合龙控制措施;在加劲梁合龙后加载二期恒载。加劲梁合龙后标高误差为-5^+63 mm,线形控制较好。  相似文献   

16.
为适应桥位处的地形、地质、运输、场地等建设条件,经方案比选,重庆笋溪河大桥主桥确定为单跨660 m简支钢桁梁悬索桥。桥塔采用钢筋混凝土门式框架结构,两塔柱竖直布置,基础为分离式承台桩基础;大桥主缆由预制平行高强钢丝索股组成,吊索采用预制平行钢丝结构;加劲梁采用钢桁梁,桥面板为正交异性钢桥面板,板桁分离结构体系;两岸锚碇均为重力式锚碇,预应力锚固系统,基础为现浇扩大基础。本桥的重难点问题主要有大桥的抗风稳定性、主桥单向纵坡带来的不利影响、钢桁梁连接顺序、主塔横向不等高设计等,通过分析和研究该桥重难点问题,找到解决该问题的关键技术,为大桥的成功建成奠定了基础。  相似文献   

17.
张家界大峡谷玻璃桥为人行景观桥,该桥采用主缆跨度为430m的空间索面玻璃桥面悬索桥。该桥横桥向布置2根主缆,单根主缆由19根索股组成,每根索股由91丝直径为5.1mm的镀锌高强钢丝组成,采用平行钢丝预制束股法制作。该桥鞍座采用间接传力结构型式,鞍体为全铸结构,架梁过程中需沿顺桥向从边跨向主跨顶推鞍座以协调桥塔两侧的主缆缆力,从而保证桥塔的受力安全。该桥长吊索索体采用高强平行钢丝,短吊索索体采用钢拉杆,吊索安装时利用缆索吊运至相应的安装位置后与索夹连接。索夹分为有吊索索夹和无吊索索夹2种类型,均为销接式,采用上、下对合型结构形式,用高强螺杆连接紧固,两半索夹利用缆索吊运至相应的安装位置后与主缆连接。  相似文献   

18.
怀化高堰西路舞水大桥桥跨布置为(49.9+40+190+110+39.9)m。东岸(49.9+40)m为预应力混凝土曲线连续梁桥;(190+110)m为钢-混混合梁独塔自锚式悬索桥;西岸39.9m为预应力混凝土直线梁桥。预应力混凝土梁采用单箱6室截面,钢梁采用封闭箱形截面。2根主缆采用空间形式的预制平行钢丝索股(PPWS),矢跨比为1/11.5。桥塔采用门形结构,基础采用水下混凝土嵌岩桩。大桥采用先梁后缆的施工方法。利用有限元软件对大桥进行整体结构计算和局部应力分析,结果表明大桥的主缆和吊索应力、主梁应力均满足规范要求。  相似文献   

19.
桐柏停车区天桥采用(18+38+66+18)m四跨单塔自锚式悬索桥方案。桥塔为钢筋混凝土拱形,加劲梁采用钢筋混凝土肋板式结构,主缆采用预制平行丝股,吊索采用空间布置,鞍座采用铸焊结构。采用MIDAS Civil程序建立有限元模型,进行成桥结构分析,结果表明该桥结构刚度满足规范要求。该桥采用先梁后缆法施工,采用倒拆法进行施工计算,在施工过程模拟计算后得到吊索下料长度。吊索分5次张拉到位完成结构体系转换,以吊索无应力长度为控制指标,控制吊索张拉力和加劲梁变形。监控结果表明,该桥成桥线形较好,主缆和吊索受力均匀。  相似文献   

20.
矮寨大桥缆索系统总体布置及结构设计   总被引:1,自引:0,他引:1  
矮寨大桥为(242+1 176+116)m的单跨钢桁梁悬索桥,主梁全长1000.5 m.主梁两侧与桥塔间无吊索区长度分别为95 m和109.5 m,在较长无吊索区加1根辅助竖拉杆,可使无吊索区主桁受力明显改善.主缆矢跨比为1/9.6,单根主缆由169根通长索股组成,单根索股由127φ5.25 mm镀锌平行钢丝组成.采用...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号