首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正新池山高架桥(Shin-Ikeyama Viaduct, 见图1)位于日本三重县龟山市新名神高速公路的龟山西至新四日市间,跨越安乐川,两侧分别为运营中的池山高架桥上、下行线。桥长945.5 m, 由7跨波形钢腹板连续刚构箱梁桥(桥长744.0 m)和3跨波形钢腹板连续箱梁桥(桥长201.5 m)组成,荷载为B活荷载。7跨桥跨径布置为(84.5+125.0+2×126.5+2×109.0+61.5) m,  相似文献   

2.
正鹫见桥(Ⅱ期线)位于日本岐阜县郡上市高鹫町鹫见,是东海北陆高速公路白鸟IC至飞弹清见IC间4车道改造工程的一环,紧邻正在使用的Ⅰ期线(1999年建成通车)修建,跨越深谷地形,平面线形R=605m。桥梁结构形式为4跨连续波形钢腹板预应力混凝土箱梁桥(见图1),桥长459m,跨径布  相似文献   

3.
西田桥(Nishita Bridge)2期线是磐越线4车道扩宽工程的一环,位于日本福岛县郡山东立交~船引三春立交间,是一座4跨连续刚构波形钢腹板预应力混凝土箱梁桥,桥长263.2m,跨径布置为(34.4+66.75+114.5+45.15)m,桥面净宽8.75m,平面线形R=1000m,采用悬臂、固定支架法施工。该桥于2007年5月开始施工,2008年6月竣工。  相似文献   

4.
王良波  王会永 《公路与汽运》2010,(4):193-196,242
在分析引起连续刚构箱梁桥箱梁腹板开裂原因的基础上,以广东佛山三水二桥为工程背景,采用Midas有限元软件和ANSYS软件,对无应力损失、预应力损失分别为30%和50%三种情况下预应力砼连续刚构箱梁桥腹板主压应力和受力情况进行了计算,对整体降温和一定温度梯度影响下箱梁腹板裂缝情况进行了计算分析,进而指出了设计和施工中预防连续刚构箱梁桥箱梁腹板开裂的措施以及中国相关规范有关温度梯度规定的缺陷。  相似文献   

5.
中新田高架桥(Nakasinden Viaduct)位于日本神奈川县海老名市,上行线桥长958m,下行线桥长991m,结构形式为预应力钢筋混凝土连续箱梁桥,桥面宽11.4~21.05m。为使现场施工省力及缩短工期,将现浇施工的PC箱梁桥腹板置换成先张法预制构件,即采用先张法预制腹板桥(见图1、图2),并采用固定支架法施工。  相似文献   

6.
杨梅山高架桥(Yobaisan Viaduct,见图1)位于日本大阪府高槻市大字原,为新名神高速公路高槻至神户线上的一座多跨连续箱梁桥,荷载为B活荷载。该桥上、下行线均为桥长超过1100 m的大型连续PRC箱梁结构,箱梁腹板有混凝土腹板和波形钢腹板2种构造。从桥梁中部向高槻侧分为主线桥和匝道桥,桥面宽度变化使箱梁的箱室数量由单室向3室变化,构造非常复杂。设计上考虑了将来增加车道扩宽桥面(桥面净宽由10.75 m加宽至16 m)的远期计划。  相似文献   

7.
王澍  孙庆东  关典  何云  马宁 《桥梁建设》2004,(Z1):31-33
沈阳市富民桥引桥为跨径30 m预应力混凝土连续刚构,主梁采用大悬臂斜腹板箱形断面,单箱三室等高度箱梁,桥墩采用双壁墩,桥台采用肋板式桥台.介绍引桥的主要设计及构造特点.  相似文献   

8.
鹤大高速红岭高架桥为5跨预应力混凝土连续刚构箱梁桥,经过多年运营,检测发现该桥右幅出现了主梁跨中下挠、腹板斜裂缝、顶板纵向裂缝等病害.为了解病害原因及结构受力状态,对病害原因进行分析,并进行荷载试验,在此基础上进行维修加固设计研究.结果表明:弯剪作用引起腹板斜向开裂,横向弯矩过大引起顶板开裂,预应力径向作用过大造成底板...  相似文献   

9.
正道扩建,在长崎芒塚IC至长崎多良见IC间修建日见梦大桥(Himiyume Bridge)Ⅱ期线(见图1)。Ⅰ期线建成于2004年,Ⅱ期线结构形式与Ⅰ期线相同,为PC3跨连续刚构波形钢腹板部分斜拉桥。桥长373.5m,跨径布置为(91.0+182.0+98.0)m,荷载为B活荷载。横向坡度为2.076%~2.5%,纵向坡度为2.5%。桥面净宽9.75m。主梁为单箱单室箱梁,顶、底板为混凝土,腹板为波形钢腹板。全桥主梁等高,梁高4.0m,采用悬臂法施工。双塔双索面布置,桥面以上塔高19.8m。采用壁式桥墩,基础为12m的明挖扩大基础。  相似文献   

10.
株洲湘江大桥是G60醴陵至娄底高速公路扩容工程的控制性工程,主桥采用(122+230+230+206+104)m四塔五跨预应力混凝土矮塔斜拉桥.该桥采用刚构-连续体系,中塔采用塔梁墩固结,边塔采用塔梁固结、塔墩分离,以提高桥梁整体刚度并控制温度效应.主梁采用预应力混凝土结构,为斜腹板单箱三室箱梁截面,悬臂长7m,通过设...  相似文献   

11.
乐昌至广州高速公路坪石至樟市段T2合同段武江大桥主桥上部构造为(62m+100m+62m)三跨预应力混凝土连续刚构箱梁。结合武江大桥工程施工,对山区连续刚构桥梁合龙段施工方案进行介绍,可为类似的工程提供借鉴。  相似文献   

12.
<正>姬川大桥(Himegawa Bridge,见图1)位于日本新潟县系鱼川市,是北陆新干线长野至金泽间的一座复线铁路桥。该桥为7跨连续PC鳍背桥,桥长462m,跨径布置为(57+69+3×70+69+57)m。桥面宽约12m,主梁采用3室箱梁结构,箱梁外侧腹板为斜腹板,底板宽度变小更美观且可减轻自重。  相似文献   

13.
江湧  汪双炎 《桥梁建设》2007,(A02):103-106
大跨度预应力混凝土连续刚构桥梁成桥后普遍存在“腹板开裂”、“跨中下挠”等质量问题,综合分析研究国内外大跨度连续刚构桥梁现状和国内多个徐变小梁试验结果,提出徐变计算的合理模式,探讨大跨度预应力混凝土连续刚构桥梁设计理论和施工工艺的优化和更新。  相似文献   

14.
为研究主要荷载对大跨度混凝土曲线箱梁横截面正应力的影响程度,以(58+100+58)m三跨变截面预应力混凝土连续刚构箱梁弯桥——坞家湾大桥为工程背景,利用MIDAS/FEA3.6建立全桥精细化实体模型,分析该桥在自重、预应力、车辆荷载、混凝土收缩徐变和温度作用下,曲线箱梁横截面顶底板法向正应力的横向分布规律。结果表明,对称布置的预应力束对曲线箱梁桥内、外两侧正应力大小影响不等;桥梁宽度较小时,受车辆偏载情况影响不明显;正应力大小在混凝土收缩徐变作用下受挂篮施工周期影响明显;温度对三跨连续刚构桥中跨影响不明显,对边跨底板影响较大。  相似文献   

15.
襄阳唐白河桥全长988m,其主桥上部结构为65m+120m+65m连续刚构,主梁为预应力混凝土箱梁,分为左右幅,箱梁根部高度为7.0m,跨中高度为2.8m,箱梁高度以及箱梁底板厚度按二次抛物线变化。本文从0#支架施工、挂篮悬浇等关键施工技术方面介绍了唐白河主桥上部结构的施工,供类似工程参考借鉴。  相似文献   

16.
<正>武库川大桥(Mukogawa Bridge,见图1)位于日本兵库县神户市新名神高速公路的高柜JCT至神户JCT间,是一座5跨连续PC蝶形腹板部分斜拉桥,也是世界上首座该类型桥梁,桥长442 m,跨径布置为71.8m+3×100m+67.8m。平面线形R=2 000m,纵向坡度1.101%,横向坡度5.0%。荷载  相似文献   

17.
桃花峪黄河大桥跨北大堤桥为(75+135+75) m 波形钢腹板连续箱梁桥,对该桥设计与施工关键技术进行研究。设计阶段研究得出:与预应力混凝土连续箱梁桥相比,波形钢腹板连续箱梁桥具有景观效果好、抗震性能好、施工效率高等优点,确定该桥采用波形钢腹板连续箱梁桥;对比工程造价,确定高跨比取1/18;采用有限元法分析横隔板数量对箱梁抗扭刚度和畸变的影响,确定中、边跨分别设置8道、4道横隔板;对3种型式连接件进行试验研究,确定波形钢腹板与顶、底板分别采用 Twin-PBL 和角钢连接;预应力采用体内和体外混合配束方案,确保维护方便。施工阶段研究得出:随跨径增大,施工位移增量对波形钢腹板加工尺寸影响显著,加工时必须考虑其影响;采用“悬臂桁车技术”保证了钢腹板起吊和安装定位;采用先边跨后中跨合龙方案,确保了大桥顺利合龙。  相似文献   

18.
陈金义  李扬  廖伟华  杨高飞 《公路》2023,(1):106-110
针对某大跨径预应力混凝土连续刚构箱梁早龄期腹板裂缝问题,对裂缝进行了现场详细的调查统计,建立了混凝土箱梁开裂节段水化热分析模型。分析结果表明,混凝土早龄期水化热产生的温度场未完全稳定,主拉应力呈现先快速增长后缓慢衰减的趋势;在早龄期张拉纵向预应力钢束后,在温度与预应力作用耦合下,混凝土箱梁腹板中产生了较大的主拉应力,从而导致腹板开裂。本研究结果可为研究大跨径连续刚构箱梁水化热效应和确定腹板钢束张拉时机提供参考。  相似文献   

19.
大跨径预应力箱梁因其受力优势在福建山区高速公路得到广泛运用。大跨径预应力混凝土连续箱梁桥腹板裂缝的存在对桥梁结构的安全性、适用性和耐久性造成严重影响。竖向预应力的应用是提高大跨径预应力混凝土连续箱梁桥腹板抗裂性的有效手段。基于2次控制张拉竖向预应力在福建省某高速连续箱梁桥的应用实例,对竖向预应力钢筋张拉对腹板抗裂性的影响进行分析。  相似文献   

20.
为研究混凝土箱梁腹板横向温度梯度的特征以及横向温度梯度对桥梁结构应力的影响,以某大桥连续刚构辅桥为背景,对混凝土箱梁腹板横向温度效应进行研究。该桥为主跨268m的连续刚构桥,南北走向,分幅布置,墩顶处混凝土箱梁腹板厚度达到1m。基于该桥1年的实测温度,首先使用最小二乘法拟合实测温度,得到箱梁腹板横向正、负温度梯度;然后通过有限元方法计算分析实测温度梯度中考虑与不考虑腹板横向温度梯度时的温度效应。研究结果表明:腹板横向正温度梯度可只考虑单侧腹板,腹板横向负温度梯度则考虑腹板两侧对称布置;考虑腹板横向正温度梯度时,底板上缘拉应力增值较大;考虑腹板横向负温度梯度时,腹板外侧纵向应力由压应力变为拉应力,应力明显增大,混凝土箱梁腹板的横向温度效应在桥梁设计中不可忽略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号