首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
叠合梁断面通常为气动外形较钝的半开放截面,为漩涡的产生和发展提供了条件,容易发生涡激振动现象。过大振幅的涡激振动会影响行车舒适性,严重时将引起结构疲劳破坏,危及桥梁结构安全。如何有效解决涡激振动问题成为叠合梁桥抗风设计的关键。为了抑制该类主梁断面的涡激振动,以宜宾盐坪坝长江大桥为背景,通过1:60的节段模型风洞试验,研究了风嘴、中央稳定板、封闭栏杆、裙板、内侧隔流板、箱梁下导流板等常见措施对双箱叠合梁断面涡激振动性能的影响。研究结果表明:封闭斜拉索防护栏杆、内侧隔流板、梁底稳定板等措施均可不同程度地降低主梁的涡振振幅,但仍无法满足桥梁的抗风设计要求;竖直裙板可以使-3°和0°攻角下主梁的涡激振动消失,但对3°攻角的减振效果有限;在叠合梁中应用广泛的传统整体式风嘴无法降低宽幅双箱叠合梁的涡振振幅;采用安装在箱梁侧下方的三角形风嘴可以减弱箱梁边缘的流动分离,优化梁体的气动外形,从而使断面在各个风攻角下的涡振振幅大幅降低。将三角形风嘴与封闭斜拉索防护栏杆的方案组合后,可进一步降低主梁的涡振振幅,满足抗风设计的要求。所提出的叠合梁涡振抑振措施具有较好的工程适用性,可为同类桥梁的抗风设计提供借鉴。  相似文献   

2.
以泸州黄舣长江大桥为工程背景,研究了流线型钢箱梁的涡激振动特性和有效的制振措施。基于1∶20大尺度节段模型风洞试验,测试在不同阻尼体系下主梁涡激振动性能,获得详细的发振风速和锁定区间的涡振振幅,发现检修车轨道对涡振的不利影响,通过设置梁底内侧导流板屏蔽了检修车轨道,抑制了涡激振动,满足规范要求。研究成果为流线型钢箱梁抗风设计的涡激振动制振措施提供参考。  相似文献   

3.
以某主跨390 m的独塔流线型钢箱梁斜拉桥为工程依托,采用风洞试验与计算流体动力学(Computational Fluid Dynamics,CFD)相结合的方法对流线型钢箱梁涡激振动机理与气动控制措施进行研究。首先,采用几何缩尺比为1∶30的主梁节段模型进行主梁涡振性能与气动控制措施优化研究;其次,采用CFD方法对主梁涡振响应进行流固耦合计算,将Newmark-β算法嵌入ANSYS Fluent用户自定义函数(User Defined Functions,UDFs)实现主梁结构振动响应求解,同时结合动网格技术实现主梁断面流固耦合分析;并根据判断条件来检索箱梁壁面上的网格单元,以获得主梁断面振动过程中的表面压力,然后结合主梁结构振动响应、表面压力以及流场特征等对主梁涡激振动机理进行分析。结果表明:该桥主梁原设计方案存在涡激共振现象,将梁底检修车轨道内移120 cm可有效抑制主梁涡振响应;主梁涡激振动响应的数值模拟结果与风洞试验结果吻合较好;检修车轨道内移120 cm后主要改变了箱梁下表面平均压力系数分布特性,且箱梁表面各测点脉动压力卓越频率不一致,有效减小了主梁涡激振动响应;流线型箱梁靠近迎风侧的“被动区域”对结构涡振响应贡献较小,背风侧“驱动区域”发生周期性旋涡脱落是影响流线型箱梁涡振的主要因素。  相似文献   

4.
为研究在常遇风速下混合梁斜拉桥的涡激振动性能及抑振措施,以半飘浮体系七跨连续双塔混合梁斜拉桥——重庆永川长江大桥为背景,设计基于1∶50主梁节段模型风洞试验,测试在不同阻尼体系下检修车轨道、导流板对涡激振动性能的影响,并对主梁外挂排水管道的形状进行了优化,最后提出了可显著改善主梁涡激振动性能的抑振措施。研究结果表明:主梁在-3°、0°和+3°攻角下均发生了明显的涡激振动现象,+3°攻角下的振幅最大,且远大于规范的容许振幅;向梁底内侧移动检修车轨道,并在其内侧布置导流板可大幅降低主梁的涡激振动振幅;位于斜腹板的圆形排水管道会削弱主梁的气动性能,改用120cm×20cm的扁状排水管道可有效提高颤振临界风速并降低涡激振动振幅。  相似文献   

5.
该文基于四川省达州市金南大道西延线二期工程上跨铁路桥梁的主梁节段模型风洞试验,探讨了主梁涡振特性.结果 表明:主梁断面存在明显的涡振现象.而后,研究了设置抑流板、移动检修车轨道、改变钢板墙外形和透风率等不同气动措施对主梁涡振性能的影响.根据研究结果,抑流板具有良好的抑振效果;适当改变检修车轨道位置能减少主梁的竖弯涡振,...  相似文献   

6.
为给窄幅流线型箱梁抗风设计提供参考,以某窄幅流线型钢箱梁悬索桥为背景,进行节段模型风洞试验,考虑风攻角,分析检修车轨道对箱梁涡振性能的影响;通过数值模拟,研究检修车轨道及其位置对箱梁绕流特性的影响机理及抑振措施的有效性。结果表明:窄幅箱梁在+3°、0°风攻角时的竖向涡振最大振幅较-3°风攻角时分别增大348%、189%;0°风攻角时,检修车轨道布置于箱梁底板内侧1/6底板宽度位置,窄幅箱梁竖向涡振最大无量纲振幅减小60.8%;在此基础上,检修车轨道内侧布置导流板后,箱梁竖向涡振最大无量纲振幅减小79.9%;检修车轨道布置于箱梁底板且布置导流板时,与检修车轨道布置于斜腹板相比,窄幅箱梁竖向涡振最大振幅大幅减小,箱梁周围的流动结构更加稳定,改善了箱梁涡振性能;将检修车轨道向箱梁底板内侧移动或布置导流板是抑制检修车轨道引起窄幅箱梁涡振的有效措施。  相似文献   

7.
半开口式分离双箱梁流线形断面是大跨桥梁较为常见的一种断面形式;然而,既有研究结果表明:半开口式分离双箱梁容易发生涡激共振;尽管涡激共振不会导致桥梁直接损毁,但是由于其起振风速低,发生频繁,容易造成结构疲劳损伤,并严重影响车辆和行人的舒适性。因此,亟需对该种断面形式的涡激共振的激振机理开展深入研究,以便寻找合理的减振/抑振措施。该文以广东佛山同济大桥主桥为工程背景,开展半开口式分离双箱梁节段模型涡激共振风洞试验,采用扫描阀测压研究了模型表面风压分布规律;通过数值积分方法计算了模型三分力系数时程曲线;进一步对三分力系数进行频谱分析,发现当模型处于+3°攻角时,升力系数具有显著的周期性;当升力系数的卓越频率与结构频率接近时发生共振现象,从而导致开口式分离式双箱梁发生涡激共振。  相似文献   

8.
南溪长江大桥主跨为820m,高速公路与人行道并存,桥面栏杆较多,且栏杆上设置了防抛网,涡振性能较为复杂。通过1:45常规节段模型风洞试验研究了检修车轨道位置改变、桥面栏杆、分流板以及攻角和阻尼对主梁涡激振动性能的影响。试验结果表明,优化检修车轨道位置和在断面上设置分流板均能有效地抑制主梁涡振的发生。  相似文献   

9.
为研究高速铁路桥梁竖弯涡振对桥上列车行车安全舒适性的影响,以某大跨公铁两用斜拉桥和CRH2型动车组为背景,进行风-车-轨-桥耦合系统振动分析。基于ANSYS与SIMPACK联合仿真平台,引入桥梁涡激力数值模型,建立风-车-轨-桥耦合系统振动模型,对比10 m/s平均风速下主梁发生与未发生竖弯涡振时桥梁和列车的动力响应,并分析不同列车速度的影响。结果表明:竖弯涡振会加剧桥梁和列车的竖向响应,而列车的存在会使发生竖弯涡振时的桥梁竖向位移和加速度分别降低31.8%和42.4%,对主梁竖弯涡振具有一定的抑制作用;主梁发生竖弯涡振时列车行车安全性指标峰值和竖向舒适性指标(竖向加速度和竖向Sperling指标)峰值明显大于未发生竖弯涡振时,并均随着车速的增大而增大;当车速超过230 km/h时,列车轮重减载率超过安全限值0.6,当车速超过200 km/h时,桥上列车竖向加速度超过安全限值1.3 m/s2。  相似文献   

10.
以某流线型钢箱梁断面为例,详细研究了主梁气动外形变化对桥梁颤振和涡振性能的影响.基于1∶50节段模型风洞试验,分别研究了箱梁的栏杆、检修车轨道、风嘴、导流板,以及斜腹板对桥梁颤振及涡振性能的影响.研究表明,栏杆和检修车轨道将弱化桥梁断面的气动性能,而风嘴和导流板则对桥梁的颤振和涡振性能有利.值得提出的是,在其他气动外形保持不变,而斜腹板倾角变为15°时,桥梁的颤振性能不仅获得了较大提升,且涡振现象还可得到消除.此现象的初步机理为:较小的斜腹板倾角可阻碍和廷后流线型箱梁下风侧漩涡的形成和脱落,从而显著削弱漩涡脱落对桥梁涡振和颤振的影响.详细的气动机理还有待深入研究.此点发现对于大跨度桥梁的抗风设计具有重大的参考价值和实际意义,并已经成功应用于国内多座大跨度桥梁的气动外形设计中.  相似文献   

11.
现代大跨桥梁跨度更大、结构更轻柔、自振频率较低且密集,在较低风速下主梁易发生涡激振动现象。涡激振动是一种带有自激、自限特性的非线性振动,影响涡激振动响应因素较多如雷诺数效应、紊流特性及主梁断面形式等。本文介绍了近期大跨度桥梁主梁涡激振动影响因素研究进展,为抗风设计及抑振措施提供参考。  相似文献   

12.
代希华  鲜荣 《公路》2012,(6):14-21
现代大跨桥梁跨度更大、结构更轻柔、自振频率较低且密集,在较低风速下主梁易发生涡激振动现象。涡激振动是一种带有自激、自限特性的非线性振动,影响涡激振动响应的因素较多如雷诺数效应、紊流特性及主梁断面形式等。介绍了近期大跨度桥梁主梁涡激振动影响因素的研究进展,为抗风设计及抑振措施提供参考。  相似文献   

13.
禹争华 《中外公路》2023,(4):131-136
双边箱钢主梁在大跨双索面斜拉桥中应用广泛。此类桥梁具有频率低、阻尼小、质量相对较轻的特点,其抗风稳定性是桥梁建设必须解决的关键问题。该文以在建平容高速公路上主跨636 m平南特大斜拉桥为工程背景,建立桥梁有限元空间模型并分析结构模态特征,开展了主梁节段模型弹性悬挂涡振和颤振风洞试验,研究悬挑人行道对双边箱主梁抗风性能的影响。试验结果表明:(1)平南特大桥双边箱主梁具有良好的涡振性能,试验中未观测到涡激振动现象;(2)悬挑人行道提高了桥梁的颤振稳定性,有利于桥梁抗风安全。  相似文献   

14.
不同尺度扁平箱梁节段模型涡激振动风洞试验   总被引:4,自引:2,他引:2  
大跨度桥梁涡激振动振幅的判定,采用大尺度主梁节段模型风洞试验可得到更精细的结果。为分析模型尺度对试验结果的影响,通过对南京长江四桥主梁1∶50和1∶20两种几何尺度扁平箱梁节段模型的涡振试验,对比两者在涡振振幅、涡振风速、涡振区、St等方面的差异,并结合雷诺数效应、阻尼比、模型细部模拟等影响因素进行分析。得知模型几何尺度越大,Re和St越大,CD越小,涡振振幅越小;常规尺度模型细部模拟的误差可能会显著影响涡振振幅;Sc增大时,锁定状态下结构振幅减小,涡振区也随之变窄,但Sc增大并不改变St数。  相似文献   

15.
边主梁断面(或Π形梁)是大跨度斜拉桥中常用的一种主梁断面形式,但容易产生涡激共振现象。涡激共振的典型特点之一是具有阻尼敏感性。文中针对在建的贵州望漠北盘江大桥的风致涡激振动进行了阻尼敏感性风洞试验研究。试验结果表明,该类桥梁涡激共振幅值对阻尼的设置十分敏感。因此,对于低风速下容易出现的涡激共振来说,采用多大的阻尼进行抗风设计十分关键。  相似文献   

16.
文章以大宁河特大桥为工程依托,建立了空间有限元模型,对该桥的颤振稳定特性、涡激振动和抖振响应进行分析与计算,得到该桥的颤振临界风速、涡振锁定风速、涡激共振振幅以及抖振位移。结果表明,拱桥成桥后刚度较大,抗风设计通常满足要求;施工中,通过制定具体的抗风措施,如设置抗风缆,能够保证抗风安全。  相似文献   

17.
嘉绍大桥为多跨斜拉桥,其分体式钢箱梁可能在常遇风速下发生涡激振动.为消除可能的涡激振动对桥梁运营安全的影响,详细开展了嘉绍大桥主梁涡激振动特性及制振措施的风洞试验研究.在开展1∶60常规节段模型试验研究,把握大桥主梁涡振特性研究的基础上,针对主梁的气动敏感区域开展了涡振制振措施的研究工作,提出了抑制涡振的梁底导流板和桥面抑振板.通过1∶20大尺度节段风洞试验更详细地把握了该桥的涡振特性,并验证了导流板和抑振板的制振效果.风洞试验结果表明,当两者单独使用时,可在0.5%的阻尼比下将涡振振幅降低50%以上,以满足规范要求;当两者联合使用时,可基本消除涡激振动.该两种制振措施为同类型主梁的涡激振动控制有较好的参考作用.  相似文献   

18.
为保证已建桥梁发生涡激振动后桥梁结构的安全以及桥上行车和行人安全,提出综合考虑人员舒适性、结构受力和停车线形三方面的大跨度钢-混结合梁悬索桥涡激振动控制指标体系。该体系包含9项指标,分别为驾乘人员舒适度、驾乘人员晕动症、行人舒适度(狄克曼指标)、加劲梁强度、加劲梁应力、加劲梁挠度、桥面纵坡、竖曲线半径和停车视距。以武汉鹦鹉洲长江大桥为背景,分别计算了“限速”和“封桥”2个交通管制措施下9项指标对应的涡激振动振幅限值。在此基础上,将9项指标对应的涡激振动振幅限值的最小值作为涡激振动限值建议取值。结果表明:当该桥发生低阶竖弯涡激振动(VS1、VAS1)时,涡激振动的控制因素为加劲梁挠度指标;当大桥发生VAS2模态的竖弯涡激振动时,涡激振动由驾乘人员晕动症指标和行人舒适度指标共同控制;当大桥发生高阶竖弯涡激振动(VAS3、VAS4)时,涡激振动由行人舒适度指标控制。涡激振动控制指标体系及限值标准的计算框架可适用于不同桥型涡激振动限值的计算。  相似文献   

19.
大比例节段模型风洞试验是预测大跨度桥梁主梁涡振性能的有效方法之一。为研究带悬臂流线型箱梁涡振性能影响因素及气动优化措施,以某大跨悬索桥为工程背景,进行了1∶25大比例节段模型风洞试验。试验研究了不同来流攻角状态下主梁断面的涡振性能,并检验了移动检修轨道位置、安装悬臂、轨道导流板以及底板竖直稳定板等气动措施的制振效果。研究结果表明:随攻角由负变正,断面的扭转涡振性能逐渐变差;检修轨道向底板中央移动能有效降低涡振振幅,同时在检修轨上附加导流板能进一步地优化涡振性能,并且导流板越宽效果越明显;悬挑臂导流板以及底板设竖直中央稳定板不适于提高本文主梁断面涡振性能。  相似文献   

20.
王骑  廖海黎 《桥梁建设》2012,42(Z1):1-6
粉房湾长江大桥为双塔双索面半飘浮体系斜拉桥,为检验该桥在强风下的颤振稳定性及在常遇风速下的涡激振动性能,对该桥动力特性进行计算并按照1∶45.8的几何缩尺比制作6个标准主梁节段模型进行风洞试验,针对试验结果提出在主梁风嘴边桁处设置导流板的制振措施.计算和试验结果表明,该桥结构刚度大、振动频率高,在检验风速范围内不会发生颤振失稳和静风失稳,满足抗风设计要求;通过在主梁风嘴边桁处设置导流板,能够实现对桥梁涡激共振的有效控制,使其满足规范要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号