首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper evaluates the impacts on energy consumption and carbon dioxide (CO2) emissions from the introduction of electric vehicles into a smart grid, as a case study. The AVL Cruise software was used to simulate two vehicles, one electric and the other engine-powered, both operating under the New European Driving Cycle (NEDC), in order to calculate carbon dioxide (CO2) emissions, fuel consumption and energy efficiency. Available carbon dioxide data from electric power generation in Brazil were used for comparison with the simulated results. In addition, scenarios of gradual introduction of electric vehicles in a taxi fleet operating with a smart grid system in Sete Lagoas city, MG, Brazil, were made to evaluate their impacts. The results demonstrate that CO2 emissions from the electric vehicle fleet can be from 10 to 26 times lower than that of the engine-powered vehicle fleet. In addition, the scenarios indicate that even with high factors of CO2 emissions from energy generation, significant reductions of annual emissions are obtained with the introduction of electric vehicles in the fleet.  相似文献   

2.
The European Union (EU) recently adopted CO2 emissions mandates for new passenger cars, requiring steady reductions to 95 gCO2/km in 2021. We use a multi-sector computable general equilibrium (CGE) model, which includes a private transportation sector with an empirically-based parameterization of the relationship between income growth and demand for vehicle miles traveled. The model also includes representation of fleet turnover, and opportunities for fuel use and emissions abatement, including representation of electric vehicles. We analyze the impact of the mandates on oil demand, CO2 emissions, and economic welfare, and compare the results to an emission trading scenario that achieves identical emissions reductions. We find that vehicle emission standards reduce CO2 emissions from transportation by about 50 MtCO2 and lower the oil expenditures by about €6 billion, but at a net added cost of €12 billion in 2020. Tightening CO2 standards further after 2021 would cost the EU economy an additional €24–63 billion in 2025, compared with an emission trading system that achieves the same economy-wide CO2 reduction. We offer a discussion of the design features for incorporating transport into the emission trading system.  相似文献   

3.
Road transport is a major source of CO2 emissions in Ireland and accounts for almost 96% of the total CO2 emissions from the transport sector. Following the recent adopted UNFCCC reporting guidelines on annual inventories [24/CP.19], this study applied the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (2006 IPCC GLs) tier 3 approach to estimate CO2 emissions from road transport at the vehicle category level, for the first time in Ireland. For this, disaggregated datasets were prepared based on year of vehicle registration and mileage since registration of the vehicle. Such an approach provided a more realistic national scenario in comparison to the use of average mileage degradation in emission calculations. This investigation comprised a recalculation of previous emissions estimates (1990–2012) and an estimation of CO2 emissions in 2013 using a previously unavailable level of data disaggregation for vehicle mileage as well as using vehicle class specific data and an improved bottom-up estimation methodology in COPERT. Historic vehicle fleet data were restructured, annual mileage data were estimated in relation to the fleet data and back extrapolated using a regression approach.The results showed that the mileage degradation was not only subject to fuel technology, engine size, and age but also the emissions class and vehicle category. It was also observed that the disaggregated level of data provided a different CO2 emissions split among the vehicle categories than that of previous estimations which were based on an aggregated level of data. Previous emissions inventories (1990–2012) were shown to have underestimated the share from diesel fuelled passenger cars by more than 56% in 2012. Diesel fuelled passenger cars were also found to account for the majority of CO2 emissions from road transport activities in Ireland in 2013. The level and trend assessment showed that emissions from Euro-II and Euro-III classed vehicles especially for passenger cars, which have a significant contribution to the total emission in 2013 have caused an increase in fleet level emissions in Ireland. In addition, the results also showed that the emissions share from Light Duty Vehicles and Heavy Duty Vehicles were overestimated by previous investigations. This paper highlights the importance of the resolution of data used in emissions inventory preparation which may impact upon future projections and policy formulation. The findings of this investigation are also discussed in relation their implications for road transport policy, including carbon taxation and future policy options aimed at achieving EU emissions target in 2020.  相似文献   

4.
This article highlights eco-driving as an available policy option to reduce climate altering GHG emissions. Recognizing the need to reduce the environmental impact of its fleet operations, the City of Calgary is a leader in developing programs and policies that aim to reduce GHG emissions and associated pollutants resulting from the use of fossil fuels. Among local action taken against climate change, the City sought to quantify CO2 emissions reductions from their municipal fleet as a result of eco-driver training, with a specific focus on engine idling. Fifteen drivers from the Development & Building Approvals Business Unit had in-vehicle monitoring technology (CarChips®) installed into their vehicles as part of a three-phase research process. The results show that gasoline and hybrid vehicles decreased average idling between 4% and 10% per vehicle per day, leading to an average emissions decrease of 1.7 kg of CO2 per vehicle per day.  相似文献   

5.
Vehicles typically deteriorate with accumulating mileage and emit more tailpipe air pollutants per mile. Although incentive programs for scrapping old, high-emitting vehicles have been implemented to reduce urban air pollutants and greenhouse gases, these policies may create additional sales of new vehicles as well. From a life cycle perspective, the emissions from both the additional vehicle production and scrapping need to be addressed when evaluating the benefits of scrapping older vehicles. This study explores an optimal fleet conversion policy based on mid-sized internal combustion engine vehicles in the US, defined as one that minimizes total life cycle emissions from the entire fleet of new and used vehicles. To describe vehicles' lifetime emission profiles as functions of accumulated mileage, a series of life cycle inventories characterizing environmental performance for vehicle production, use, and retirement was developed for each model year between 1981 and 2020. A simulation program is developed to investigate ideal and practical fleet conversion policies separately for three regulated pollutants (CO, NMHC, and NOx) and for CO2. According to the simulation results, accelerated scrapping policies are generally recommended to reduce regulated emissions, but they may increase greenhouse gases. Multi-objective analysis based on economic valuation methods was used to investigate trade-offs among emissions of different pollutants for optimal fleet conversion policies.  相似文献   

6.
There is growing evidence that consumers respond more effectively to upfront price signals, such as vehicle purchase taxes and feebate policies, and to tax incentives that are more salient than others, such as company car taxes graded by CO2 emissions. This paper examines tax changes in The Netherlands, which are among the most stringent and most salient in Europe, and assesses the ex-post purchasing impacts and CO2 effectiveness of six years of CO2-based tax incentives for low-carbon cars in The Netherlands. Dutch tax incentives resulted in 13 g/km, or 11% lower average CO2 emissions in 2013. The Netherlands has moved from the 12th position before the tax changes in 2007 to become Europe’s number one in terms of the lowest average new car CO2 emissions and highest share of electric vehicles in 2013. Tax incentives for new cars sold between 2008 and 2013 have resulted in 4.6 million tons of potential lifetime CO2 abatement at the cost of a drop in tax revenues of 30–50%. However, when corrected for the Dutch policy-induced increasing real-world fuel-economy shortfall and leakage of carbon reduction potential through vehicle export of low-carbon cars, only 3.5 million tons or 75% of the CO2 reduction remains. CO2-based tax incentives for company cars seem to have contributed the most to the observed turnaround in purchasing behavior towards lower CO2-emitting passenger cars.  相似文献   

7.
Many countries introduced scrapping programs in the 90s, partly legitimated by environmental impact reductions. However, reducing the age of the current car fleet may result in an increase of life-cycle CO2 emissions. This will probably also be true for cars to be produced in future unless fuel efficiency of new cars improves much faster than the historical trend indicates. Reducing the age of petrol-fuelled cars without a catalytic converter will reduce both life-cycle NOx and VOC emissions but is less cost-effective than fitting catalytic converters on these cars. In any case, the influence of a car’s lifetime on life-cycle NOx and VOC emissions will be reduced in the near future.  相似文献   

8.
In 2014, highway vehicles accounted for 72.8% of all Greenhouse Gases emissions from transportation in Europe. In the United States (US), emissions follow a similar trend. Although many initiatives try to mitigate emissions by focusing on traffic operations, little is known about the relationship between emissions and road design. It is feasible that some designs may increase average flow speed and reduce accelerations, consequently minimizing emissions.This study aims to evaluate the impact of road horizontal alignment on CO2 emissions produced by passenger cars using a new methodology based on naturalistic data collection. Individual continuous speed profiles were collected from actual drivers along eleven two-lane rural road sections that were divided into 29 homogeneous road segments. The CO2 emission rate for each homogeneous road segment was estimated as the average of CO2 emission rates of all vehicles driving, estimated by applying the VT-Micro model.The analysis concluded that CO2 emission rates increase with the Curvature Change Rate. Smooth road segments normally allowed drivers to reach higher speeds and maintain them with fewer accelerations. Additionally, smother segments required less time to cover the same distance, so emissions per length were lower. It was also observed that low mean speeds produce high CO2 emission rates and they increase even more on roads with high speed dispersions.Based on this data, several regression models were calibrated for different vehicle types to estimate CO2 emissions on a specific road segment. These results could be used to incorporate sustainability principles to highway geometric design.  相似文献   

9.
Car ownership in China is expected to grow dramatically in the coming decades. If growing personal vehicle demand is met with conventional cars, the increase in greenhouse gas emissions will be substantial. One way to mitigate carbon dioxide (CO2) emissions from passenger travel is to meet growing demand for cars with alternative vehicles such as hybrid- and battery-electric vehicles (HEVs and BEVs). Our study examines the cost-effectiveness of transitioning from conventional cars to HEVs and BEVs, by calculating their marginal abatement cost (MAC) of carbon in the long-run. We find that transitioning from conventional to hybrid and battery electric light-duty, four-wheel vehicles can achieve carbon emissions reductions at a negative cost (i.e. at a net benefit) in China. In 2030, the average MAC is estimated to be about −$140/ton CO2 for HEVs and −$515/ton CO2-saved for BEVs, varying by key parameters. The total mitigation potential of each vehicle technology is estimated to be 1.38 million tons for HEVs and 0.75 million tons for BEVs.  相似文献   

10.
Devising effective management strategies to relieve dependency on private vehicles, i.e. cars and motorcycles, depends on the ability to accurately and carefully examine the effects of corresponding strategies. Disaggregate choice models regarding the ownership, type and usage of cars and motorcycles are required to achieve this. Consequently, this study proposes integrated car and motorcycle models based on a large-scale questionnaire survey of Taiwanese owners of cars and motorcycles, respectively. Incorporating gas mileage and emission coefficients for different types of cars and motorcycles into the proposed models can enable the estimation and comparison of reductions in energy consumption and emissions under various management strategies. To demonstrate the applicability of the proposed integrated models, scenarios involving 10% and 30% increases in gas prices are analyzed and compared. The results indicate that gas price elasticities of cars and motorcycles are low, ranging from 0.47 to 0.50 for cars and 0.11 for motorcycles. Additionally, a high ratio of discouraged car users shifting to use of motorcycles neutralizes the effects of increased gas price in reducing energy consumption and emissions. Pollution of CO and HC even slightly increased because motorcycles are much more polluting in terms of CO and HC. At last, the reductions of energy consumption and emissions under 10% and 30% increase (or decrease) in other manipulating variables are also estimated and compared. The countermeasures for reducing ownership and usage of cars and motorcycles are then recommended accordingly.  相似文献   

11.
The European Clean Vehicle Directive was introduced in 2009 to create an obligation on public authorities to take into account the impact of energy consumption, carbon dioxide (CO2) emissions and pollutant emissions into their purchasing decisions for road transport vehicles. This should stimulate the market for clean and energy-efficient vehicles and improve transport's impact on environment, climate change and energy use. Therefore the so-called ‘Operational Lifetime Cost’ of a vehicle is calculated, divided into the cost for energy consumption, CO2 and pollutant (nitrous oxide, particulate matter, non-methane hydrocarbons) emissions. In Belgium, a different methodology has been developed to calculate the environmental impact of a vehicle, called ‘Ecoscore’, based on a well-to-wheel approach. More pollutants are included compared to the Clean Vehicle methodology, but also indirect emissions are taken into account. In this paper, both methodologies are compared and used to analyze the environmental performance of passenger cars with different fuel types and from different vehicle segments. Similar rankings between both methodologies are obtained; however, the large impact of energy use (and CO2 emissions) in the Clean Vehicle methodology disadvantages compressed natural gas cars, as well as diesel cars equipped with particulate filters, compared to the Ecoscore methodology.  相似文献   

12.
The European Union has adopted a range of policies aiming at reducing greenhouse gas emissions from road transport, including setting binding targets for tailpipe CO2 emissions for new light-duty fleets. The legislative framework for implementing such targets allows taking into account the CO2 savings from innovative technologies that cannot be adequately quantified by the standard test cycle CO2 measurement. This paper presents a methodology to define the average productivity of vehicle-mounted photovoltaic roofs and to quantify the resulting CO2 benefits for conventional combustion engine-powered passenger cars in the European Union. The method relies on the analysis of a large dataset of vehicles activity data, i.e. urban driving patterns acquired with GPS systems, combined with an assessment of the shading effect from physical obstacles and indoor parking. The results show that on average the vehicle photovoltaic roof receives 58% of the available solar radiation in real-world conditions, making it possible to reduce CO2 emissions from passenger cars in a range from 1% to 3%, assuming a storage capacity of 20% of the 12 V battery dedicated to solar energy. This methodology can be applied to other vehicles types, such as light and heavy-duty, as well as to different powertrain configurations, such as hybrid and full electric.  相似文献   

13.
Alternative powertrains are considered as a promising option to significantly reduce CO2 emissions from passenger cars. One major prerequisite is their successful market introduction. In this paper, we present a system dynamics model that allows for the evaluation of strategies for the market introduction of alternative powertrain technologies in long-range passenger cars (⩾400 km) under competition. The model considers two competing manufacturers, one first-mover and one follower, each introducing plug-in hybrids and fuel cell electric vehicles according to exogenously defined strategies, which comprise timing, pricing, and technology parameters. The manufacturers can learn from each other due to technology spillover, leading to cost reductions of the powertrains. We use an exemplary dataset for the German car market to study the manufacturers’ influence on the market success of alternative powertrains as well as the underlying mechanisms. The results indicate that in general more competition leads to higher market shares of alternatively powered vehicles and thus allows for a higher reduction of emissions. However, this might cause decreasing profits for both manufacturers, especially if the follower pursues an aggressive pricing strategy when entering the market to gain market shares from its competitor. Also, technology spillover has a positive effect on the market penetration. This particularly holds true for a low level of technology experience where high cost reductions can be achieved and for fuel cell electric vehicles where the costs of the powertrain are much higher compared to plug-in hybrids.  相似文献   

14.
Capacity, demand, and vehicle based emissions reduction strategies are compared for several pollutants employing aggregate US congestion and vehicle fleet condition data. We find that congestion mitigation does not inevitably lead to reduced emissions; the net effect of mitigation depends on the balance of induced travel demand and increased vehicle efficiency that in turn depend on the pollutant, congestion level, and fleet composition. In the long run, capacity-based congestion improvements within certain speed intervals can reasonably be expected to increase emissions of CO2e, CO, and NOx through increased vehicle travel volume. Better opportunities for emissions reductions exist for HC and PM2.5 emissions, and on more heavily congested arterials. Advanced-efficiency vehicles with emissions rates that are less sensitive to congestion than conventional vehicles generate less emissions co-benefits from congestion mitigation.  相似文献   

15.
This paper assesses the impacts of a targeted policy designed to influence car purchasing trends towards lower CO2 emitting vehicles. Vehicle registration tax and annual motor tax rates in Ireland changed in July 2008 from being based on engine size to emissions performance of cars. This paper provides a one year ex-post analysis of the first year of the tax change, tracking the change in purchasing trends arising from the measure related to specific CO2 emissions, engine size and fuel, and the implications for car prices, CO2 emissions abatement, and revenue gathered. While engine efficiency improvements had been offset by purchasing trends towards larger and generally less efficient cars in the past, with the average MJ/km remaining constant from 2000 to 2007, this analysis shows that in the first year of the new taxation system the average specific emissions of new cars fell by 13% to 145 g/km. This was brought about, not by a reduction in engine size, but rather through a significant shift to diesel cars. Despite an unexpected reduction in car sales due to a recession in 2008, the policy measure has had a larger than anticipated impact on CO2 emissions, calculated to be 5.9 ktCO2 in the first year of the measure. The strong price signal did however result in a 33% reduction in tax revenue from VRT, in financial terms amounting to a drop of €166 million compared to a baseline situation.  相似文献   

16.
This paper shows the results of a comparative fleet test the main objective of which was to measure the influence of Low Viscosity Oils (LVO) over the fuel consumption and CO2 emissions of urban buses. To perform this test, 39 urban buses, classified into candidate and reference groups depending on the engine oil viscosity, covered a 60,000 km mileage corresponding to two rounds of standard Oil Drain Interval (ODI). In the same way, for 9 buses of the 39 buses, the effect of differential LVO over fuel consumption and their interaction with engine LVO was assessed during the second ODI.Test results confirm that the use of LVO could reduce fuel consumption, hence CO2 emissions. However, special attention should be taken prior to its implementation in a fleet, particularly if the vehicles are powered by engines with high mechanical and thermal stresses during vehicle operation because this could lead to friction loss increase, loss of the potential fuel consumption reduction of LVO and, in the worst scenario, higher rates of engine wear.  相似文献   

17.
Electric vehicles are often said to reduce carbon dioxide (CO2) emissions. However, the results of current comparisons with conventional vehicles are not always in favor of electric vehicles. We outline that this is not only due to the different assumptions in the time of charging and the country-specific electricity generation mix, but also due to the applied assessment method. We, therefore, discuss four assessment methods (average annual electricity mix, average time-dependent electricity mix, marginal electricity mix, and balancing zero emissions) and analyze the corresponding CO2 emissions for Germany in 2030 using an optimizing energy system model (PERSEUS-NET-TS). Furthermore, we distinguish between an uncontrolled (i.e. direct) charging and an optimized controlled charging strategy. For Germany, the different assessment methods lead to substantial discrepancies in CO2 emissions for 2030 ranging from no emissions to about 0.55 kg/kWhel (110 g/km). These emissions partly exceed the emissions from internal combustion engine vehicles. Furthermore, depending on the underlying power plant portfolio and the controlling objective, controlled charging might help to reduce CO2 emissions and relieve the electricity grid. We therefore recommend to support controlled charging, to develop consistent methodologies to address key factors affecting CO2 emissions by electric vehicles, and to implement efficient policy instruments which guarantee emission free mobility with electric vehicles agreed upon by researchers and policy makers.  相似文献   

18.
Transportation sector accounts for a large proportion of global greenhouse gas and toxic pollutant emissions. Even though alternative fuel vehicles such as all-electric vehicles will be the best solution in the future, mitigating emissions by existing gasoline vehicles is an alternative countermeasure in the near term. The aim of this study is to predict the vehicle CO2 emission per kilometer and determine an eco-friendly path that results in minimum CO2 emissions while satisfying travel time budget. The vehicle CO2 emission model is derived based on the theory of vehicle dynamics. Particularly, the difficult-to-measure variables are substituted by parameters to be estimated. The model parameters can be estimated by using the current probe vehicle systems. An eco-routing approach combining the weighting method and k-shortest path algorithm is developed to find the optimal path along the Pareto frontier. The vehicle CO2 emission model and eco-routing approach are validated in a large-scale transportation network in Toyota city, Japan. The relative importance analysis indicates that the average speed has the largest impact on vehicle CO2 emission. Specifically, the benefit trade-off between CO2 emission reduction and the travel time buffer is discussed by carrying out sensitivity analysis in a network-wide scale. It is found that the average reduction in CO2 emissions achieved by the eco-friendly path reaches a maximum of around 11% when the travel time buffer is set to around 10%.  相似文献   

19.
In this study, the costs involved in the use of petrol, diesel, natural gas, biogas, and methanol (produced from natural gas and biomass) in cars and heavy trucks are compared. The cost includes fuel cost, extra capital cost for vehicles using alternative fuels, and the environmental cost of VOC, NOx, particulate and CO2 emission based on actual 1996 and estimated 2015 emission factors. The costs have been calculated separately for rural, urban and city-centre traffic. A complete macroeconomic assessment of the effect of introducing alternative fuels is not, however, included in the study. The study shows that no alternative fuel can compete with petrol and diesel in rural traffic when the economic valuation of CO2 emission is taken as current Swedish CO2 taxes ($200/tonne C). In cities with a natural gas network, natural gas is the fuel with the lowest cost for both cars and heavy trucks, based on 1996 emission factors. Methanol from natural gas and biogas from waste products can also compete with diesel in urban traffic. With predicted improvements in technology and subsequent emission reductions, no alternative fuel can compete with petrol in any of the traffic situations studied by 2015, and only in city-centre traffic will alternative fuels be less costly than diesel in heavy vehicles. Of the biomass-based fuels studied, low-cost biogas from waste products is the most competitive one and is, already at current CO2 taxes, the fuel with lowest cost for heavy trucks in urban traffic in areas where natural gas networks do not exist. To enable the more widespread use of biomass-based fuels, i.e. using feedstocks such as energy crops or logging residues that are available in larger amounts, the economic valuation of CO2 emission has to be 2–2.5 times higher than current Swedish CO2 tax level.  相似文献   

20.
Energy and emissions impacts of a freeway-based dynamic eco-driving system   总被引:1,自引:0,他引:1  
Surface transportation consumes a vast quantity of fuel and accounts for about a third of the US CO2 emissions. In addition to the use of more fuel-efficient vehicles and carbon-neutral alternative fuels, fuel consumption and CO2 emissions can be lowered through a variety of strategies that reduce congestion, smooth traffic flow, and reduce excessive vehicle speeds. Eco-driving is one such strategy. It typically consists of changing a person’s driving behavior by providing general static advice to the driver (e.g. do not accelerate too quickly, reduce speeds, etc.). In this study, we investigate the concept of dynamic eco-driving, where advice is given in real-time to drivers changing traffic conditions in the vehicle’s vicinity. This dynamic strategy takes advantage of real-time traffic sensing and telematics, allowing for a traffic management system to monitor traffic speed, density, and flow, and then communicates advice in real-time back to the vehicles. By providing dynamic advice to drivers, approximately 10–20% in fuel savings and lower CO2 emissions are possible without a significant increase in travel time. Based on simulations, it was found that in general, higher percentage reductions in fuel consumption and CO2 emission occur during severe compared to less congested scenarios. Real-world experiments have also been carried out, showing similar reductions but to a slightly smaller degree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号