首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vehicle-use modelling at the household level has taken on new importance with the pressures on governments to encourage more efficient utilisation of increasingly scarce nonreplenishible liquid fuels. The fundamental energy equation recognizes two direct influences on consumption—the fuel efficiency of the vehicle and the amount of use. Until recently, the interrelationship between vehicle choice and vehicle utilisation at the household level was acknowledged but ignored. The availability of reliable vehicle-use data at the household level now enables a more serious effort at amending the imbalance of research effort where the reliance has been predominantly on vehicle choice modelling and gross (exogenous) assumptions on utilisation as a basis for predicting fuel consumption. This paper proposes an econometric method for identifying the influences on household vehicle use. It differs from previous empirical work in that vehicle kilometers, fuel cost per kilometer and vehicle fuel efficiency are endogenous, with utilisation of each vehicle endogeneously dependent on the utilisation of each and every household vehicle. The data are drawn from wave 1 of a four-wave panel of 1436 households in the Sydney metropolitan area. The empirical findings expose a set of influences on use hitherto not considered. The model specification provides an appropriate module for integration with household-based discrete choice models of vehicle choice.  相似文献   

2.
Given a fundamental role of automobiles in human society, evaluation of vehicle energy efficiency is of utmost importance. Various reports have been published hitherto concerning well-to-wheel (WTW) fuel consumption at the vehicle operation phase. On the other hand, WTW energy consumption at other lifecycle phases has been scarcely integrated in the assessment of vehicle energy efficiency. Particularly, WTW energy consumption for material structure is significantly associated with fuel economy. As such, this paper firstly analyzes the lifecycle WTW vehicle energy efficiency from the perspective of both material structures at the manufacture phase and fuel consumption at the operation phase for conventional vehicle (CV), electric vehicle (EV), hybrid vehicle (HV) and fuel cell vehicle (FCV). Then, an expected transition of vehicle weight and energy consumption arising from material structural shift through the replacement of steel with aluminum is evaluated. Finally, the overall vehicle energy efficiency in Japan in 2020–2050 is projected. It is discovered that the inclusion of energy consumption for material structure has a significant impact on the determination of the vehicle energy efficiency, particularly for new generation vehicles. WTW analysis at the multiple lifecycle phases may be of use in establishing more comprehensive principles of vehicle energy efficiency.  相似文献   

3.
Considering the role of transport for a 1.5 Degree stabilization pathway and the importance of light-duty vehicle fuel efficiency within that, it is important to understand the key elements of a policy package to shape the energy efficiency of the vehicle fleet. This paper presents an analysis focusing on three types of policy measures: (1) CO2 emission standards for new vehicles, (2) vehicle taxation directly and indirectly based on CO2 emission levels, and (3) fuel taxation. The paper compares the policies in the G20 economies and estimates the financial impact of those policies using the example of a Ford Focus vehicle model. This analysis is a contribution to the assessment of the role of the transport sector in global decarbonisation efforts. The findings of this paper show that only an integrated approach of regulatory and fiscal policy measures can yield substantial efficiency gains in the vehicle fleet and can curb vehicle kilometres travelled by individual motorised transport. Using the illustrative example of one vehicle model, the case study analysis shows that isolated measures, e.g. fuel efficiency regulation without corresponding fuel and vehicle taxes only have minor CO2 emission reduction effects and that policy measures need to be combined in order to achieve substantial emission reduction gains over time. The analysis shows that the highest level of impact is achieved by a combination regulatory and fiscal policies rather than only one policy even if this policy is more aggressive. When estimating the quantitative effect of fuel efficiency standards, vehicle and fuel tax, the analysis shows that substantial gains with regard to CO2 emission are only achieved at a financial impact level above 500 Euros over a four year period.  相似文献   

4.
This paper examines the influence of compressed natural gas, liquefied petroleum gas and gasoline fuel on the exhaust emissions and the fuel consumption of a spark-ignition engine powered passenger car. The vehicle was driven according to the urban driving cycle and extra urban driving cycle speed profiles with the warmed-up engine. Cause and effect based analysis reveals potential for using different fuels to reduce vehicle emission and deficiencies associated with particular fuels. The highest tank to wheel efficiency and the lowest CO2 emission are observed with the natural gas fuelled vehicle, that also featured the highest total hydrocarbon emissions and high NOx emissions because of fast three way catalytic converter aging due the use of the compressed natural gas. Retrofitted liquefied petroleum gas fuel supply systems feature the greatest air-fuel ratio variations that result in the lowest TtW efficiency and in the highest NOx emissions of the liquefied gas fuelled vehicle.  相似文献   

5.
Energy used in transport is a particularly important focus for environment-development studies because it is increasing in both developed and developing countries and is largely carbon-intensive. This paper examines whether a systemic, mutually causal, cointegrated relationship exists among mobility demand, gasoline price, income, and vehicle ownership using US data from 1946 to 2006. We find that those variables co-evolve in a transport system; and thus, they cannot be easily disentangled in the short-run. However, estimating a long-run relationship for motor fuel use per capita was difficult because of the efficacy of the CAFE standards to influence fleet fuel economy. The analysis shows that the fuel standards program was effective in improving the fuel economy of the US vehicle fleet and in temporarily lessening the impact on fuel use of increased mobility demand. Among the policy implications are a role for efficiency standards, a limited impact for fuel tax, and the necessity of using a number of levers simultaneously to influence transport systems.  相似文献   

6.
Differentiated vehicle taxes are considered by many a useful tool for promoting environmentally friendly vehicles. Various structures have been implemented in several countries, e.g. Ireland, France, The Czech Republic, and Denmark. In many countries the tax reforms have been followed by a steep change in new vehicle purchases toward more diesel vehicles and more fuel-efficient vehicles. The paper analyses to what extent a vehicle tax reform similar to the Danish 2007 reform may explain changes in purchasing behaviour. The paper investigates the effects of a tax reform, fuel price changes, and technological development on vehicle type choice using a mixed logit model. The model allows a simulation of the effect of car price changes that resemble those induced by the tax reform. This effect is compared to the effects of fuel price changes and technology improvements. The simulations show that the effect of the tax reform on fuel efficiency is similar to the effect of rising fuel prices while the effect of technological development is much larger. The conclusion is that while the tax reform appeared in the same year as a large increase in fuel efficiency, it seems likely that it only explains a small part of the shift in fuel efficiency that occurred and that the main driver was the technological development.  相似文献   

7.
Vehicle fuel efficiency has taken on more economic and environmental significance due to the rise in gasoline prices in 2007/2008. We examine adoption of fuel efficiency technologies by the US automobile industry between 1985 and 2002 and consider the environmental implications. The technology efficient frontier between vehicle weight and fuel efficiency of the US automobile fleet did not move outward significantly for an extended period in the 1980s and 1990s indicating a lack of company- or industry-wide adoption of new fuel efficiency technologies. While the firm with inferior technology capability did push its efficient frontier outward to close the technology gap, the two leading firms’ efficient frontiers first showed signs of possible regression in the early 1990s, and did not move outward significantly until the mid 1990s. Several managerial and policy options are examined for improving vehicle fuel efficiency.  相似文献   

8.
Environmental pollution and energy use in the light-duty transportation sector are currently regulated through fuel economy and emissions standards, which typically assess quantity of pollutants emitted and volume of fuel used per distance driven. In the United States, fuel economy testing consists of a vehicle on a treadmill, while a trained driver follows a fixed drive cycle. By design, the current standardized fuel economy testing system neglects differences in how individuals drive their vehicles on the road. As autonomous vehicle (AV) technology is introduced, more aspects of driving are shifted into functions of decisions made by the vehicle, rather than the human driver. Yet the current fuel economy testing procedure does not have a mechanism to evaluate the impacts of AV technology on fuel economy ratings, and subsequent regulations such as Corporate Average Fuel Economy targets. This paper develops a method to incorporate the impacts of AV technology within the bounds of current fuel economy test, and simulates a range of automated following drive cycles to estimate changes in fuel economy. The results show that AV following algorithms designed without considering efficiency can degrade fuel economy by up to 3%, while efficiency-focused control strategies may equal or slightly exceed the existing EPA fuel economy test results, by up to 10%. This suggests the need for a new near-term approach in fuel economy testing to account for connected and autonomous vehicles. As AV technology improves and adoption increases in the future, a further reimagining of drive cycles and testing is required.  相似文献   

9.
The United States transportation sector consumes 5 billion barrels of petroleum annually to move people and freight around the country by car, truck, train, ship and aircraft, emitting significant greenhouse gases in the process. Making the transportation system more sustainable by reducing these emissions and increasing the efficiency of this multimodal system can be achieved through several vehicle-centric strategies. We focus here on one of these strategies – reducing vehicle mass – and on collecting and developing a set of physics-based expressions to describe the effect of vehicle mass reduction on fuel consumption across transportation modes in the U.S. These expressions allow analysts to estimate fuel savings resulting from vehicle mass reductions (termed fuel reduction value, FRV), across modes, without resorting to specialized software or extensive modeling efforts, and to evaluate greenhouse gas emission and cost implications of these fuel savings. We describe how FRV differs from fuel intensity (FI) and how to properly use both of these metrics, and we provide a method to adjust FI based on mass changes and FRV. Based on this work, we estimate that a 10% vehicle mass reduction (assuming constant payload mass) results in a 2% improvement in fuel consumption for trains and light, medium, and heavy trucks, 4% for buses, and 7% for aircraft. When a 10% vehicle mass reduction is offset by an increase in an equivalent mass of payload, fuel intensity (fuel used per unit mass of payload) increases from 6% to 23%, with the largest increase being for aircraft.  相似文献   

10.
This paper presents results from a plug-in hybrid vehicle drive share program involving retrofitted hybrid electric vehicles. A potential for high fuel efficiency is indicated, however, the average fuel efficiency was only marginally better than conventional hybrid vehicles. This is due to the majority of vehicle miles traveled occurring on trips outside the “all electric” range and very short trips where fuel consumption is dominated by emissions control strategies. The work also considers the availability of the battery for vehicle to grid services and finds that there are a large number of trips in the afternoon period, typically when electrical demand is at a peak. Vehicle charging activity also tended towards daytime activity, contrary to the oft-assumed off-peak charging pattern.  相似文献   

11.
It is well established that individual variations in driving style have a significant impact on vehicle energy efficiency. The literature shows certain parameters have been linked to good fuel economy, specifically acceleration, throttle use, number of stop/starts and gear change behaviours. The primary aim of this study was to examine what driving parameters are specifically related to good fuel economy using a non-homogeneous extended data set of vehicles and drivers over real-world driving scenarios spanning two countries. The analysis presented in this paper shows how three completely independent studies looking at the same factor (i.e., the influence of driver behaviour on fuel efficiency) can be evaluated, and, despite their notable differences in location, environment, route, vehicle and drivers, can be compared on broadly similar terms. The data from the three studies were analysed in two ways; firstly, using expert analysis and the second a purely data driven approach. The various models and experts concurred that a combination of at least one factor from the each of the categories of vehicle speed, engine speed, acceleration and throttle position were required to accurately predict the impact on fuel economy. The identification of standard deviation of speed as the primary contributing factor to fuel economy, as identified by both the expert and data driven analysis, is also an important finding. Finally, this study has illustrated how various seemingly independent studies can be brought together, analysed as a whole and meaningful conclusions extracted from the combined data set.  相似文献   

12.
In this study, the use of energy carriers based on renewable energy sources in battery-powered electric vehicles (BPEVs), fuel-cell electric vehicles (FCEVs), hybrid electric vehicles (HEVs) and internal combustion engine vehicles (ICEVs) is compared regarding energy efficiency, emission and cost. There is the potential to double the primary energy compared with the current level by utilising vehicles with electric drivetrains. There is also major potential to increase the efficiency of conventional ICEVs. The energy and environmental cost of using a passenger car can be reduced by 50% solely by using improved ICEVs instead of ICEVs with current technical standard. All the studied vehicles with alternative powertrains (HEVs, FCEVs, and BPEVs) would have lower energy and environmental costs than the ICEV. The HEVs, FCEVs and BPEVs have, however, higher costs than the future methanol-fuelled ICEV, if the vehicle cost is added to the energy and environmental costs, even if significant cost reductions for key technologies such as fuel cells, batteries and fuel storages are assumed. The high-energy efficiency and low emissions of these vehicles cannot compensate for the high vehicle cost. The study indicates, however, that energy-efficiency improvements, combined with the use of renewable energy, would reduce the cost of CO2 reduction by 40% compared with a strategy based on fuel substitution only.  相似文献   

13.
We estimate the elasticities of fuel and travel demand with respect to fuel prices and income in the case of Norway. Furthermore, we derive the direct rebound effects that explain the degree to which a fuel price increase is “offset” in the form of greater fuel use and/or travel due to improvements in vehicle fuel efficiency. For this purpose, we use and compare two alternative econometric approaches: the error correction model (ECM) and the dynamic model. Our initial assumption is that one should not be indifferent with respect to the approach used to derive elasticities. The data used are for the period 1980–2011. Our results indicate the following: (1) the dynamic model fits the data better than the ECM model does; (2) the estimated elasticities of fuel demand with respect to price and income are −0.26 and 0.06 in the short run and −0.36 and 0.09 in the long run. For travel demand, the respective elasticities are −0.11 and 0.06 in the short run and −0.24 and 0.13 in the long run, implying inelastic demands for fuel and travel demand; and (3) rebound effects indicate that 0.26% and 0.06% of fuel savings as a result of fuel price increase will be offset in the form of more fuel use in the short run and in the long run, respectively, if fuel efficiency increases by 1%. Our policy recommendations are that policies should not be indifferent to the methods used to derive elasticities. We contend that it is crucial to seriously consider rebound effects in policy making because basic elasticity estimates exaggerate the impact of fuel price increases.  相似文献   

14.
This paper presents an analysis of vehicle regenerative braking systems as a quick and relatively easy means of achieving higher overall fuel efficiency and lowering carbon emissions. The system involves the installation of an additional electric motor/generator in parallel to the vehicle’s internal combustion engine and is used in conjunction with a DCDC converter and ultracapacitor. The system is used to recapture the energy lost in vehicle braking, significantly reducing a vehicle’s overall energy consumption and lowering vehicle emissions. Experimentally-based evidence is collected and compared for two sample vehicles to deduce the potential fuel and emissions saving.  相似文献   

15.
This paper assess whether a real-world second-by-second methodology that integrates vehicle activity and emissions rates for light-duty gasoline vehicles can be extended to diesel vehicles. Secondly it compares fuel use and emission rates between gasoline and diesel light-duty vehicles. To evaluate the methodology, real-world field data from two light-duty diesel vehicles are used. Vehicle specific power, a function of vehicle speed, acceleration, and road grade, is evaluated with respect to ability to explain variation in emissions rates. Vehicle specific power has been used previously to define activity-based modes and to quantify variation in fuel use and emission rates of gasoline vehicles taking into account idle, acceleration, cruise, and deceleration. The fuel use and emission rates for light-duty diesel vehicles can also be explained using vehicle specific power -based modes. Thus, the methodology enables direct comparisons for different vehicle fuels and technologies. Furthermore, the method can be used to estimate average fuel use and emission rates for a wide variety of driving cycles.  相似文献   

16.
Transformation of the motor vehicle fleet has been an important feature of the world’s peak car phenomenon. Very few urban transport studies have explored such important changes in large urban cities. Using an innovative green vehicle datasets constructed for 2009 and 2014, this paper investigates the ongoing change in urban private vehicle fleet efficiency (VFE) in Brisbane. The spatial patterns of VFE change were examined with social-spatial characteristics of the urban area. The results showed that the social and spatial effect of VFE changes remain uneven over urban space. The inner urban areas have experienced higher level of VFE change, whilst people in the outer and oil vulnerable areas showed a low tendency in shifting to more efficient vehicles. The implication of VFE change for future household vehicle adoption was also evaluated based on a cost-benefit analysis of new vehicle technology costs and expected fuel savings for households that choose a fuel efficient vehicle. The results show that imposing a stronger national fuel economy target in the long term would accelerate evolution of vehicle fleets and oil vulnerability reduction in Brisbane.  相似文献   

17.
This paper investigates the new 2011 automobile fleet to quantify the variation in models’ efficiency and underlying technology attributes. This involves analysis of test data to quantify the aerodynamic, rolling resistance, and powertrain efficiency characteristics of each model, as well as analysis to understand relationships between these and vehicle fuel consumption. The findings indicate that while vehicles are about 14% efficient on average, there is wide variation and direct evidence of dramatically improved powertrain efficiency within existing models. Existing gasoline and diesel models demonstrate improved powertrain efficiency by over 25%, hybrid gasoline-electric powertrains by over 50%, fuel cells by a factor of three, and all-electric by a factor of four as compared to the average 2011 vehicle. Advanced aerodynamic and tire rolling resistance technologies are also in evidence.  相似文献   

18.
The future of US transport energy requirements and emissions is uncertain. Transport policy research has explored a number of scenarios to better understand the future characteristics of US light-duty vehicles. Deterministic scenario analysis is, however, unable to identify the impact of uncertainty on the future US vehicle fleet emissions and energy use. Variables determining the future fleet emissions and fuel use are inherently uncertain and thus the shortfall in understanding the impact of uncertainty on the future of US transport needs to be addressed. This paper uses a stochastic technology and fleet assessment model to quantify the uncertainties in US vehicle fleet emissions and fuel use for a realistic yet ambitious pathway which results in about a 50% reduction in fleet GHG emissions in 2050. The results show the probability distribution of fleet emissions, fuel use, and energy consumption over time out to 2050. The expected value for the fleet fuel consumption is about 450 and 350 billion litres of gasoline equivalent with standard deviations of 40 and 80 in 2030 and 2050, respectively. The expected value for the fleet GHG emissions is about 1360 and 850 Mt CO2 equivalent with standard deviation of 130 and 230 in 2030 and 2050 respectively. The parameters that are major contributors to variations in emissions and fuel consumption are also identified and ranked through the uncertainty analysis. It is further shown that these major contributors change over time, and include parameters such as: vehicle scrappage rate, annual growth of vehicle kilometres travelled in the near term, total vehicle sales, fuel economy of the dominant naturally-aspirated spark ignition vehicles, and percentage of gasoline displaced by cellulosic ethanol. The findings in this paper demonstrate the importance of taking uncertainties into consideration when choosing amongst alternative fuel and emissions reduction pathways, in the light of their possible consequences.  相似文献   

19.
Panel data analysis is used within a fixed effect model to examine the relationship between vehicle safety ratings and fuel efficiency of 45 new vehicle models sold in the US between 2002 and 2007. While conventional wisdom and most early literature suggest that lighter, more fuel efficient vehicles are less safe to their occupants, the tests show a positive relationship between vehicle safety ratings and fuel efficiencies not only within and across most size classes but also for vehicles produced by both the US and Asian automakers. We also explore the design initiatives by manufacturers to compensate for the reductions in weight/size of fuel-efficient vehicles.  相似文献   

20.
The ’MOT’ vehicle inspection test record dataset recently released by the UK Department for Transport (DfT) provides the ability to estimate annual mileage figures for every individual light duty vehicle greater than 3 years old within Great Britain. Vehicle age, engine size and fuel type are also provided in the dataset and these allow further estimates to be made of fuel consumption, energy use, and per vehicle emissions of both air pollutants and greenhouse gases. The use of this data permits the adoption of a new vehicle-centred approach to assessing emissions and energy use in comparison to previous road-flow and national fuel consumption based approaches. The dataset also allows a spatial attribution of each vehicle to a postcode area, through the reported location of relevant vehicle testing stations. Consequently, this new vehicle data can be linked with socio-demographic data in order to determine the potential characteristics of vehicle owners.This paper provides a broad overview of the types of analyses that are made possible by these data, with a particular focus on distance driven and pollutant emissions. The intention is to demonstrate the very broad potential for this data, and to highlight where more focused analysis could be useful. The findings from the work have important implications for understanding the distributional impacts of transport related policies and targeting messaging and interventions for the reduction of car use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号