首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为验证酸性集料用于沥青路面面层的适用性,结合宝汉高速路面工程,通过对沿线的蚀变闪长岩酸性集料沥青混合料不同浸水时长残留稳定度、不同冻融次数劈裂强度以及不同老化时长的冻融劈裂强度试验,评价了采用减小沥青混合料空隙率并添加矿物填料以及抗剥落剂复合改性的酸性蚀变闪长岩集料沥青混合料的水稳性能,并与原路面中性集料沥青混合料进行对比。结果表明:采用复合改善措施,能明显提高酸性蚀变闪长岩集料沥青混合料的水稳性能及抗老化性能,其复合改性后技术指标达到了中性石料的水平,具有用于沥青面层的可行性。  相似文献   

2.
何静  宋涛  黄维蓉  冉龙飞  向兵 《公路与汽运》2014,(2):117-119,140
针对重庆地区高速公路集料状况,通过对集料添加不同比例针片状颗粒,研究针片状含量对AC-20C沥青混合料性能的影响。研究表明,重庆地区沥青路面集料针片状含量波动范围较大,多数针片状含量为5%~15Yoo;随着针片状含量的增加,最佳油石比和空隙率增大,马歇尔稳定度、动稳定度、冻融劈裂抗拉强度比和残留稳定度均降低,降低了沥青混合料的高温稳定性和水稳定性,对沥青混合料产生不利影响,建议沥青路面粗集料针片状颗粒含量不宜超过15%。  相似文献   

3.
沥青路面是中国高等级公路的主要路面类型,车辙病害是沥青路面的主要病害之一。为分析沥青路面车辙影响因素及其程度,该文针对不同沥青混合料类型、不同路面构造类型进行了室内车辙试验,影响因素包括结合料类型、集料级配类型、最大粒径、上下面层混合料类型等。试验结果表明:沥青针入度、集料级配、沥青混合料物理性能对沥青混合料抗高温稳定性的影响比较接近,防治沥青路面车辙需要从沥青材料、矿料级配和沥青混合料施工质量等方面采取综合处置措施。沥青路面上面层混合料的动稳定度对沥青路面结构整体高温稳定性的影响大于下面层混合料的动稳定度。在沥青路面产生的永久变形(车辙)中,上面层混合料仍具有重要影响,但下面层混合料的影响程度上升。因此,在进行路面抗车辙能力设计时,既要考虑沥青混合料的高温稳定性,又要考虑路面结构组合。  相似文献   

4.
丛培良  陈拴发  陈华鑫 《公路》2012,(10):167-171
采用体积设计方法,研究了环氧沥青混合料级配组成和成型前后养护时间对混合料性能的影响。试验结果表明:采用体积设计方法设计的环氧沥青混合料粗集料多,空隙率小,保证了环氧沥青混合料具有良好的抗滑性和抗渗性能。环氧沥青混合料成型前后养护时间影响试件的空隙率、矿料间隙率、沥青饱和度、稳定度和劈裂强度。成型前经过养护的环氧沥青混合料,成型后初始稳定度和劈裂强度比成型前未经过养护的高;但成型前经过养护试件的最终稳定度和劈裂强度低于成型前未经过养护的试件。而且,环氧沥青混合料在60℃养护7d后,已经具有良好的抗水损害性能和抗车辙性能。  相似文献   

5.
为解决大量废陶瓷堆积带来的环境问题,同时为提高沥青路面的抗滑性能,采用耐磨性能较好的陶瓷再生集料等体积取代部分石灰岩集料(替代率分别为0%、20%、40%和60%),研制陶瓷沥青混合料,开展陶瓷沥青混合料的路用性能研究,主要包括配合比设计、高温稳定性、水稳定性能,以及力学性能研究。试验结果表明:当陶瓷掺量不超过60%时,陶瓷沥青混合料的动稳定度,浸水残留稳定度,冻融劈裂强度比等各项性能指标均满足规范要求,路用性能良好。  相似文献   

6.
通过测定盐溶液浸蚀条件下的沥青与集料粘附性、沥青混合料残留稳定度、冻融劈裂等试验,对比分析了不同沥青种类和不同盐溶液浓度对沥青混合料材料水稳定性的影响,并结合化学-力学耦合理论分析了盐分对沥青混合料侵蚀机理。实验结果表明,SBS改性沥青与集料的粘附性及耐盐浸蚀性能明显优于普通道路石油沥青,在沥青中预拌消石灰对改善粘附性作用不明显;Na2SO4溶液对沥青与集料粘附性的浸蚀作用大于NaCl溶液;沥青与集料粘附性破坏属于化学-力学耦合损伤效应;沥青混合料随空隙率的增大,稳定度和残留稳定度降低,但流值变化规律不确定;初始的内部缺陷和损伤会导致沥青混凝土冻融劈裂抗拉强度的较大幅度降低。  相似文献   

7.
为了沥青道路推荐较优沥青混合料组合,根据规范要求设计所使用集料的级配并确定最佳油石比,对比研究了酸性矿石(砂岩、花岗岩)在加与不加抗剥落剂的条件下沥青混合料的水稳定性、冻融劈裂强度和车辙动稳定度的性能。研究结果表明:添加掺量为0.3%的LX-6525型抗剥落剂均能提高砂岩与花岗岩混合料的水稳定性、冻融劈裂强度和车辙动稳定度,其中砂岩和花岗岩混合料的水稳定性和车辙动稳定度均满足规范要求。但只有砂岩的冻融劈裂强度比仍未达到规范不小于75%的要求。综合考虑混合料水稳定性能、取材成本和施工环境等因素,在对比研究的四种沥青混合料组合中,建议采用添加掺量为0.3%的LX-6525型抗剥落剂的花岗岩混合料作为施工选择。  相似文献   

8.
包茂高速公路陕蒙界至榆林段位于毛乌素沙漠边缘,年最低气温-32.7℃。该段沥青路面主要病害为半刚性基层横向反射裂缝10~15m一道,横缝渗水导致路面唧浆,基层松散、脱空。路面养护维修方案采用了10cm厚乳化沥青厂拌冷再生混合料作为下面层,补强路面结构、延缓病害发展。项目研究了路面铣刨回收材料的性能,确定了乳化沥青厂拌冷再生混合料的配合比。当路面回收料掺配80%,乳化沥青用量3.8%,水泥用量1.5%时,冷再生混合料空隙率11.8%、动稳定度3083(次/mm)、15℃干劈裂强度0.639Mpa、冻融劈裂强度比76.2%。厂拌冷再生混合料具有良好的路用性能,且经济效益和环保效益显著。  相似文献   

9.
采用沥青搅拌站回收的碱性废粉掺入沥青混合料,代替部分矿粉,研究碱性废粉部分代替矿粉的可行性以及可掺入的最大量。按废粉占矿粉的比例为0%、30%、50%和70%,分别制备不同废粉掺量的沥青混合料,进行车辙试验、浸水稳定度试验、飞散试验、冻融劈裂试验,以检验废粉掺量变化对沥青混合料车辙以及水稳定的影响。试验结果表明:随着碱性废粉掺入量的增加,沥青混合料的动稳定度、浸水残留稳定度减小,飞散损失增加,冻融劈裂抗拉强度比减小。当废粉掺量为50%时,沥青混合料的动稳定度略超过《公路沥青路面施工技术规范》(JTG F40-2004)要求,浸水残留稳定度、冻融劈裂残留稳定度均不满足规范要求。当废粉掺量为30%时,沥青混合料的动稳定度、浸水残留稳定度、冻融残留强度比满足规范要求,得到所研究碱性废粉在沥青混合料中的最大掺入量为30%。  相似文献   

10.
冷再生沥青混合料性能评价   总被引:1,自引:0,他引:1  
从基层材料的功能要求出发,评价了乳化沥青冷再生混合料的高温性能、劈裂强度和水稳定,从而论证冷再生沥青混合料用作高速公路沥青路面基层材料的可行性。通过马歇尔稳定度试验和劈裂强度试验评价了冷再生混合料的强度性能,确定了混合料的最佳沥青用量;用车辙试验检验了再生混合料的高温稳定性;用冻融劈裂试验评价了再生混合料的水稳定性。研究发现,冷再生混合料的最佳沥青用量为(纯沥青油石比)2.5%;最佳油石比下,冷再生混合料车辙动稳定度均大于3000次/mm,冻融劈裂残余劈裂强度比为97.39%。结果表明,所设计的冷再生混合料具有较高的力学强度,优良的高温性能和水稳定性,能够用于铺筑高速公路沥青路面基层。  相似文献   

11.
为研究大温度区间条件下SBS改性沥青混合料的高低温性能,采用埃索70#基质沥青、SBS改性沥青、大温度区间SBS改性沥青进行ATB-25、AC-16、sup-13等3种类型混合料配合比设计,室内成型试件并进行车辙动稳定度、马歇尔稳定度、真空饱水马歇尔残留稳定度、冻融劈裂等试验,对比研究大温度区间条件下SBS改性沥青混合料的高温稳定性及低温抗裂性能。研究表明:同类型沥青混合料配合比条件下,相比埃索70#基质沥青与SBS改性沥青,大温度区间SBS改性沥青混合料试件的马歇尔稳定度、车辙稳定度、真空饱水马歇尔残留稳定度、冻融劈裂强度及非冻融劈裂强度均有较大提高。  相似文献   

12.
黄烨旻  娄宁  胡靖 《公路》2023,(10):118-123
为推广建筑再生集料在沥青路面中、下面层中的应用,采用“渗透性防水剂+水性聚氨酯”复合强化方式,对建筑再生集料沥青混合料(RAAM)、复合强化建筑再生集料沥青混合料(CRAAM)、天然集料沥青混合料(NAAM)的高温、低温和水稳定性能开展对比研究。研究表明:复合强化建筑再生集料的压碎值和吸水率分别为16.9%、1.05%,且与沥青具有良好黏附性,其基本性能与天然集料接近;CRAAM的最佳油石比较RAAM降低0.4%;CRAAM的高温、低温和水稳定性能均与NAAM接近;与RAAM相比,CRAAM的动稳定度、最大弯拉应变、残留稳定度和冻融劈裂强度比分别提高66%、38.5%、23.3%和17.5%,“渗透性防水剂+水性聚氨酯”复合强化方式可以有效改善建筑再生集料沥青混合料的路用性能。  相似文献   

13.
为了提高高等级公路沥青路面养护技术——超薄磨耗层的使用性能,依托实体工程,分析了超薄磨耗层连续级配结构混合料的配合比设计、沥青用量、抗水损害性能、高温抗车辙性能与抗滑性能等,以及其施工技术要点。结果表明:设计的连续级配超薄磨耗层混合料析漏损失值、残留稳定度、冻融劈裂强度、构造深度指标均满足相关规范要求,连续级配超薄磨耗层技术具有较好的推广价值。  相似文献   

14.
探究阻燃剂种类、掺量对SBS改性沥青性能的影响,并着重研究自制复合阻燃剂对以花岗岩为集料的AC-13C和SMA-13沥青混合料路用性能的影响。试验结果表明:复合阻燃剂具有阻燃、抑烟的双重作用,掺量为10%时,阻燃沥青的氧指数达到25.8%,阻燃效果较为明显;复合阻燃剂可以小幅提高以花岗岩为集料的AC-13C和SMA-13的车辙动稳定度,但降低了它们的残留稳定度比和冻融劈裂强度比,其中冻融劈裂强度比分别降低到70.1%和70.7%,降幅分别达到17.1%和16.7%。在冻害严重、地下水位偏高的隧道地段不宜采用此两种以花岗岩为集料的阻燃沥青混合料。  相似文献   

15.
《公路》2021,(6)
将玻璃珠集料掺加在环氧沥青混合料中制备了玻璃沥青混合料,研究了玻璃珠掺量对玻璃珠集料环氧沥青混合料和玻璃珠集料SBS改性沥青混合料最佳油石比和路用性能的影响。结果表明,玻璃珠集料环氧沥青混合料和玻璃珠集料SBS改性沥青混合料的最佳油石比都会随着玻璃珠掺量的增加呈现逐渐减小的趋势;玻璃珠掺量的增加不会对玻璃珠集料环氧沥青混合料的稳定度产生明显影响,但是玻璃珠集料SBS改性沥青混合料的稳定度会随着玻璃珠掺量的增加而逐渐减小。密封处理(水)不会对混合料试件的稳定度产生显著影响;随着玻璃珠集料掺量的增加,混合料试件的马歇尔稳定度、残留稳定度MSR、冻融劈裂强度比TSR都呈现逐渐减小趋势,且环氧沥青混合料的TSR要高于SBS改性沥青混合料。随着玻璃珠集料掺量从0增加至26%,混合料的动稳定度呈现先增加后减小特征,4种玻璃珠集料掺量的混合料的动稳定度都满足GB/T 30598—2014标准要求。蚀刻后混合料试件的表面摆值都有不同程度减小,玻璃珠集料掺量为16%~26%的混合料试件的蚀刻前后摆值BPN_b和BPN_p都低于玻璃珠集料掺量为0的试件,蚀刻后摆值损失率则会随着玻璃珠集料掺量增加而增大。  相似文献   

16.
为优化泡沫沥青就地冷再生混合料级配,研究了水泥、机制砂和19~26.5 mm粗集料对泡沫沥青冷再生混合料路用性能的影响。结果表明:与不掺水泥相比,掺1.5%的水泥,冷再生混合料的冻融强度比、动稳定度、弯拉强度分别提高19.0%,160.0%,18.0%。机制砂掺量为20.0%时,与不掺机制砂相比,冻融劈裂强度比、动稳定度、抗弯拉强度可分别提高10.0%,62.0%,13.0%;9.5~19 mm粗集料掺量为10.0%~20.0%时,与不掺粗集料相比,动稳定度可至少提高96.0%。建议冷再生混合料中19~26.5 mm粗集料掺量为10.0%~20.0%,机制砂掺量为20.0%,水泥掺量为1.5%。  相似文献   

17.
利用自主研发的基本型沥青路面再生剂对老化沥青再生后的常规理化性质和抗老化性能进行了测试分析,同时利用马歇尔稳定度试验、浸水马歇尔试验、冻融劈裂试验及车辙试验等考察了再生沥青混合料的路用性能.结果表明研发的沥青路面再生剂再生效果理想,再生沥青混合料的路用性能满足应用要求.  相似文献   

18.
水损坏是沥青路面主要病害之一,而空隙过大、存在渗水通道是引发水损害的主要原因之一。为了研究不同空隙率对沥青混合料水稳定性和渗水性能的影响,制备了不同空隙率的沥青混合料试件,并分别进行了饱水率试验、浸水马歇尔试验、冻融劈裂试验以及渗水性能试验。结果表明:沥青混合料试件的饱水率随空隙率增大而增加,且空隙率超过8%时,饱水率快速增加;残留稳定度和冻融劈裂强度比均随空隙率增大而减小;沥青混合料试件的渗水系数随着空隙率的增大而增加,且空隙率大于8%时,沥青混合料的渗水系数急剧增大。  相似文献   

19.
在公路建设中使用酸性集料铺筑沥青路面,必须掺加抗剥落剂来增强与沥青的粘附性。文章通过马歇尔残留稳定度试验、冻融劈裂强度试验以及高温车辙试验,对酸性花岗岩掺加水泥沥青混合料路用性能与未掺加抗剥落剂碱性石灰岩沥青混合料的性能进行对比研究,表明掺水泥抗剥落剂的花岗岩沥青混合料的性能完全满足规范要求,可应用于公路建设中。  相似文献   

20.
为提高沥青路面使用性能,采用TP-101聚烯烃外掺型改性剂改性沥青混合料,以车辙试验、弯曲蠕变试验、冻融劈裂试验、半圆弯曲试验等评价TP-101改性沥青混合料(TP-101 modified asphalt concrete, TPAC)的路用性能,并采用道路工程有限元软件BISAR分析TPAC的性能效益。试验结果表明,随TP-101改性剂掺量增加,TPAC的动稳定度、低温破坏应变显著增大,马歇尔稳定度、冻融劈裂强度比先增大后减小;TP-101掺量在0.3%~0.4%时,其动稳定度达到6 000次/mm以上,远超规范要求值,低温破坏应变达3 000με,冻融劈裂强度比为84%,柔韧性指数为30~34,TPAC的路用性能满足重载交通的使用需求。BISAR分析结果表明,使用TPAC可优化路面结构,提高路面使用寿命。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号