首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
建立无砟轨道系统高频振动边界元模型,运用有限元和边界元相结合的方法,将已经计算出的轨道系统垂向高频振动响应作为声辐射计算边界条件,得到钢轨与轨下结构的声辐射特性。分析结果表明:钢轨和轨道板对噪声的贡献量中,在800~3 000 Hz时主要是以钢轨的声辐射为主,在0~500 Hz时主要以轨道板的声辐射为主;随着距离的增长,轨道系统的声辐射呈线性递减趋势;钢轨部位声辐射要比轨道板部位的显著,平均大15 dB左右,轨腰的声辐射量要比钢轨其他部位的显著。本文预测轨道系统噪声的结果与其它模型得出的结果都有很好的一致性,说明本文的模型与做法是合理可行的,为以后的铁路减振降噪提供了理论依据。  相似文献   

2.
为了弄清周向敷设脊肋式约束阻尼铁路车轮减振降噪机理,将铁路车轮简化成同样比例尺度的等厚圆盘,并在圆盘上敷设周向分布脊肋约束阻尼,分析其振动-声辐射特性。基于混合有限元-边界元法,建立了敷设约束阻尼结构的圆板系统振动-声辐射模型。其中,系统的振动响应由实体有限元模态叠加法计算得到,约束阻尼结构的阻尼效应通过结构模态损耗因子来考虑。进而将系统振动响应作为声学边界元的初始条件,用基于声学边界元法的软件SYSNOISE计算得到系统的声辐射。考虑到计算阻尼结构模态损耗因子的精度与计算耗时情况,对复特征值法和模态变形能法进行了分析比较。数值计算中,考虑了两种不同截面形式的周向脊肋及其布设位置对系统振动声辐射的影响。结果表明,周向脊肋对降低系统振动声辐射有积极作用,其效果与脊肋截面形状和布设位置有关。本文的分析为低噪声车轮的设计提供重要的参考。  相似文献   

3.
城市轨道交通高架线路的声振问题已成为限制其发展的关键因素之一.桥型和材质决定了混凝土槽形梁会对桥上轨道结构的声辐射产生很大的影响.本文利用多体系统动力学软件UM建立地铁车辆-橡胶浮置板-槽形梁耦合动力学模型,求解该系统的动力学特性;以橡胶浮置板的动力学频域响应作为声学边界条件,采用有限元-边界元方法分析了该减振轨道的声辐射特性;在此基础上对比分析橡胶浮置板减振轨道在自由声场与考虑槽形梁腹板遮蔽效应时的声辐射特性,研究槽形梁对桥上轨道结构声辐射传播的影响.研究结果表明:槽形梁遮蔽效应对桥上轨道结构的线性声压级和总声压级等声辐射特性有很大影响;槽形梁能够明显减弱桥上轨道结构在桥下部分范围内的声辐射传播.  相似文献   

4.
为研究无砟轨道声辐射特性,建立了CRTSⅠ型板式无砟轨道的波数有限元振动模型。在钢轨顶部施加单位谐荷载,以求出的钢轨及轨道板的振动速度响应为边界条件,再采用声学波数边界元法计算出钢轨、轨道板及轨道整体结构的声辐射特性。分析结果表明:钢轨、轨道板及轨道整体结构的声功率级在一阶峰值频率前随频率增大而近似线性增加,在一阶峰值频率后,声功率级波动较大且出现多个峰值。在轨道整体结构一阶峰值频率前轨道板的声辐射贡献量占主导,而在该峰值频率后钢轨声辐射的贡献量逐渐占主导作用。扣件刚度主要影响一阶峰值频率前轨道整体辐射声功率,随着扣件刚度的增加,轨道整体结构声功率级幅值明显降低。CA砂浆层弹性模量的变化对轨道板辐射声功率级影响较大,但对轨道整体结构辐射声功率级的影响较小。  相似文献   

5.
基于车-线-桥耦合振动和瞬态声辐射理论,提出一种混凝土箱梁低频结构噪声的数值预测方法 ,以分析结构噪声的时变特性。采用板/壳单元模拟箱梁,求解车-线-桥耦合振动系统,得到时域内箱梁局部振动响应。将该响应作为声辐射模型的边界条件,采用瞬态边界元法求解结构噪声场。以32m混凝土简支箱梁为例,将计算结果与实测数据进行对比验证。结果表明:计算值与实测值在时域和频域内均吻合良好;振动与噪声的1/3倍频程显著频带分别为31.5~63Hz和40~80Hz;振动响应大小由作用在箱梁上的轮对数决定,不同时刻振动响应的频谱特性变化较小;邻跨声辐射的影响不可忽略,简化分析中可取两跨计算。  相似文献   

6.
轨道板声辐射特性   总被引:1,自引:0,他引:1  
板式轨道的噪声辐射比有砟轨道严重.为预测板式轨道的噪声辐射,根据虚功原理或者哈密尔顿原理建立轨道板的振动方程,并通过傅立叶变换得到轨道板在稳态荷载作用下的振动响应,然后用边界元法建立轨道板的声学边界元模型,以轨道板的振动响应作为边界条件计算轨道板的声辐射特性.研究结果表明:轨道板的声辐射效率与频率的关系具有随频率变化的复杂特性,呈非线性,不能用1个简单的解析表达式描述;轨道板的厚度对声辐射效率没有影响,对轨道板的声辐射功率低频段影响较大,高频段影响较小;轨道板面积对轨道板声辐射效率的影响较大,对轨道板声辐射功率的影响甚微;轨道板下橡胶垫板对轨道板的振动和声辐射在50 Hz以下及1(000 Hz以上频段时影响较大,在50~1 000 Hz频段影响较小;博格轨道板的声辐射效率和声辐射功率在30 Hz以下频段时,低于A型轨道板,其他频段均大于A型轨道板.  相似文献   

7.
轨道结构参数对钢轨和轨枕振动特性的影响   总被引:1,自引:0,他引:1  
建立轨道结构三维实体有限元模型,同时考虑钢轨、轨下垫层、轨枕和道床,并与已有轨道结构振动模型的数值结果进行比较。结果表明,本文模型的数值结果在高频部分较合理,能够反映轨道结构高频振动特性。分析不同轨道结构参数对钢轨和轨枕振动特性的影响,这些轨道结构参数主要包括钢轨材料损失因子和钢轨质量、轨下垫层损失因子和垂向刚度、轨枕质量和损失因子、道床的刚度与阻尼特性等。分析结果表明,轨道结构参数的改变对钢轨和轨枕在不同频域范围影响不同,通过合理的轨道结构系统参数优化设置,可达到减振降噪效果。相关计算和分析结果可为低噪声轨道的设计提供依据与参考。  相似文献   

8.
由于浮置板轨道结构具有良好的减振性能已被广泛的应用于城市轨道交通.基于列车-轨道-桥梁相互作用理论和声学边界元法对钢弹簧浮置板的结构低频声辐射进行详细的分析.系统研究了这种具有良好减振效果的轨道结构自身的声辐射问题,为既具有良好减振效果,又辐射低噪声的环保型减振轨道结构的研发提供一定的理论依据.研究结果表明:三维有限元...  相似文献   

9.
为分析列车通过时桥上半封闭式声屏障的动力响应,采用Midas建立了桥梁和声屏障的有限元模型,分析结构的自振特性。基于车辆-轨道-桥梁动态相互作用原理,建立列车-轨道-桥梁/声屏障动态相互作用模型,对列车过桥时的安全性与舒适性进行数值计算,研究半封闭式声屏障的动力响应特点。结果表明:在桥上设置半封闭式声屏障后,桥梁和声屏障整体结构的刚度有所变化;列车以不大于220 km/h的速度过桥时,车辆的安全性指标均合格,车辆的平稳性指标为优秀,桥梁的动力响应指标满足规范要求;桥梁与声屏障连接处的边界条件对声屏障动力响应的影响显著。  相似文献   

10.
本文利用数值方法分析地铁车轮辐板安装刹车盘对其声辐射特性的影响。数值分析中,首先根据某新型地铁车轮的实际尺寸建立车轮的三维实体有限元模型,基于模态叠加法计算该车轮在不同激励下的动态响应。计算动态响应时考虑轮轨名义滚动圆处法向单位力、轮缘根部横向单位力和轮轨名义滚动圆处轮轨表面粗糙度等效力3种激励对地铁车轮振动特性的影响。利用有限元算得的车轮振动结果,生成声学网格速度边界条件,通过声学边界元法计算车轮的声辐射特征。分析结果表明,车轮声辐射主要来自车轮辐板轴向贡献,踏面径向贡献相比之下不显著。另外,刹车盘能起到对辐板声屏障的作用,从而衰减来自车轮辐板的噪声辐射。车轮辐板安装刹车盘后,在通过小半径曲线时,可以有效降低轮轨横向力作用下激发出的车轮轴向模态振动噪声,同时对车轮的直线滚动噪声也有一定的抑制作用。另外,刹车盘对车轮轴向辐射声场的指向性有较显著影响。  相似文献   

11.
弹性支承块轨道结构落轴冲击动力性能分析   总被引:1,自引:0,他引:1  
将轮轨接触边界条件用罚函数法释放,采用点面接触单元导出轮轨接触有限元控制方程,建立轨道结构落轴冲击动力有限元方程。分析落轴冲击对轨道结构产生的动态响应,比较弹性支承块及短轨枕埋入式整体道床轨道结构的动力性能,并用现场实测数据进行验证。结果表明:弹性支承块轨道结构与普通短轨枕结构相比,其轨下及块下刚度易于调整,可进行双层弹性的合理匹配,从而有效吸收轮轨冲击,提高列车运行平稳性,具有减振降噪与延缓轮轨磨损等优越性能。建议其块下刚度稍大于轨下刚度,增幅值控制在20%以内。  相似文献   

12.
随着世界高速铁路的快速发展,高速铁路轨道检测技术已突破传统的轨道几何检测,朝着综合检测的方向发展。结合安装在我国新一代高速综合检测列车CRH380B-002的轮轨力检测系统在高速铁路轨道检测中的实际应用情况,介绍了我国在高速铁路轨道综合检测领域的最新研究进展———基于轮轨力测量的高速铁路轨道检测技术,并提出了一种基于轮轨力测量的高速铁路轨道状态评判方法。基于轮轨力测量的轨道检测技术通过安装在固定车辆(一般为轨道检查车)的连续测量测力轮对测量轮轨之间的相互作用力,从对车辆运行安全性和轨道疲劳寿命影响的角度对轨道状态进行检测,指导轨道日常养护。该技术是高速铁路轨道综合检测的重要组成部分,是对传统轨道几何检测的有效补充和完善,它的投入运用将更好的保障高速铁路的安全运营。  相似文献   

13.
高速铁路钢轨打磨关键技术研究   总被引:2,自引:0,他引:2  
根据我国高速铁路上运行车辆的车轮型面设计钢轨的预打磨轨头廓面.按照该预打磨轨头廓面对钢轨进行预打磨,可有效改善轮轨的接触状态.给出了适用于不同车轮型面的钢轨预打磨深度理论设计值以及适用于LMA和S1002G车轮型面的钢轨预打磨轨头廓面.关于预打磨后的实际轨头廓面与预打磨设计廓面的误差,在轨距角部位应控制在-0.1~0.3 mm范围内.建议我国高速铁路的钢轨打磨周期为每30~50 Mt通过总重打磨1次,对于无砟轨道取上限,有砟轨道取下限;关于60kg·m-1钢轨的预打磨深度,在轨距角部位应达到0.8~1.5 mm,在主要轮轨接触部位应大于0.3 mm;钢轨打磨后的表面粗糙度应小于10μm;采用48磨头打磨车时应打磨3~4遍,采用96磨头打磨车时应打磨2遍.  相似文献   

14.
轨道结构落轴冲击动态响应有限元分析   总被引:2,自引:0,他引:2  
通过确定落轴冲击问题的轮轨接触条件,根据接触冲击响应的虚位移原理,将轮轨接触边界条件用罚函数法释放,确立轮轨接触变分方程;采用点面接触单元导出轮轨接触有限元控制方程,进一步建立轨道结构动力有限元方程,从而可模拟计算落轴冲击对轨道结构产生的动态响应。基于该分析方法,求解了弹性支承块轨道结构的动力性能,并由现场实测得到验证。结果表明,运用所建立的落轴冲击有限元计算模型分析轨道结构动力性能,直观有效。  相似文献   

15.
基于CRTSⅡ型板式无砟轨道关键参数对行车安全的影响,指导轨道结构的优化,利用有限元方法和轮轨系统耦合动力学原理,建立车辆-轨道-路基系统垂向耦合动力学模型,研究轨道结构关键参数对列车的振动特性和轮轨垂向作用力的影响规律。研究结果表明:轨道板厚度对行车平稳性基本无影响;当扣件刚度从20 kN/mm增加到100 kN/mm时,轮对和转向架的振动加速度分别增加43.94%和7.98%,轮轨垂向力增加29.83%;扣件阻尼从20 kN·s/m增大到100 kN·s/m时,轮对和转向架的振动加速度分别减小21.64%和7.09%,轮轨垂向力减小9.48%,车体变化不大;为保证行车的安全性和平稳性,扣件阻尼和混凝土支承层厚度应尽可能取较大值。  相似文献   

16.
高速铁路轮轨关系研究涉及学科范围较广、试验数据繁杂,通常需要不同单位的大量试验人员协作完成,深入分析和综合利用这些海量试验数据和仿真数据,对轮轨关系研究至关重要。文章详细描述采用B/S构架程序开发的高速铁路轮轨关系综合信息管理系统,该系统可以实现对现场试验、仿真试验和实验室试验的流程管理,具有数据上传、审核、下载与共享等功能,并具备数据的展示分析功能,可实现轨道、车辆系统中轮轨试验数据的对应统一,对于促进轮轨关系数据管理的规范化、统一化以及数据的共享开放具有重要意义。目前,此系统已在多个主机厂得到应用,验证了系统功能的可行性和稳定性。  相似文献   

17.
针对沙漠地区有砟轨道结构存在的沙害问题严重现象,对典型沙害成因进行研究分析;根据典型沙害成因提出一种适用于沙漠地区铁路的改进型双块式无砟轨道结构形式,并对新型双块式无砟轨道结构参数进行优化分析;既有沙漠铁路积沙严重的主要原因是有砟道床表面粗糙度过大导致沙粒的沉积;采用无砟轨道结构形式的线路,在保证列车运行安全的前提下,其走向宜与当地主风向垂直;基于利用自然风排沙及经济方面的综合考虑,相邻轨枕、道床板组成的U形槽的宽高比宜为2。  相似文献   

18.
WJ-8型小阻力扣件轨下橡胶垫板滑出动力学研究   总被引:1,自引:1,他引:0  
基于轨下胶垫滑出后扣件支撑刚度减小和轮轨系统动力学基本原理,建立车辆-轨道-桥梁垂向耦合动力学模型,计算分析轨下胶垫滑出对车辆与轨道结构的动力学性能的影响,得出以下结论:(1)随着轨下胶垫滑出量的增加,车辆与轨道结构的振动加速度、钢轨与道床板的垂向位移、最大轮轨力、减载率均有增大趋势;最小轮轨力有减小趋势;且随着轨下胶垫滑出量的增加,车辆以及轨道结构的动力学指标的变化趋势逐渐增大。(2)基于车辆以及轨道结构的动力学指标,轨下胶垫滑出量不宜大于120 mm。  相似文献   

19.
减轻列车轮轨横向动力作用的技术措施   总被引:1,自引:0,他引:1  
基于铁道车辆-轨道耦合动力学理论及仿真分析系统,分析了机车车辆悬挂参数、结构参数及轨道结构参数对轮轨横向相互作用的影响,在此基础上提出了降低轮轨横向动力作用的技术措施:(1)一系水平定位刚度(纵向和横向刚度)对轮轨横向动力作用影响较大,刚度值选取的基本设计原则是,在充分满足运动稳定性的前提下,尽可能降低刚度值;(2)二系水平(包括纵向和横向)刚度对轮轨横向动力作用影响不明显,设计时,应更多地考虑机车车辆的平稳性;(3)簧下质量对轮轨横向动力作用影响较大,较小簧下质量,将使轮轨横向动力作用得到显著的降低;(4)较低的扣件横向刚度、扣件垂向刚度及道床横向刚度等参数值将有利于降低轮轨横向动力作用。  相似文献   

20.
为了确保跨座式单轨车辆在不同工况下的行车安全,针对跨座式单轨车辆在雨天、冰雪、潮湿环境下的运行状态进行研究。基于流-固耦合算法(CEL)和有限元方法构建耦合关联的轮胎-梁面模型,在此基础上研究不同积水深度、不同行车速度条件下,轮轨垂向力和轮轨应力等参数的变化情况,解析水膜厚度与轮轨垂向力以及轮胎应力之间的关系。研究结果表明:接触参数数值变化受到梁面抗滑性能影响,这是引发行车安全问题的主要诱因。车辆轮胎接触垂向力随着梁面积水厚度的增加快速降低,从而引起车轮漂移、瞬间打滑现象。研究成果可为跨座式单轨制定行车安全的保障措施提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号