首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This research is aimed at developing a model that maximizes system profit when determining the aircraft routes and flight frequencies in a network. The model employs network flow techniques to effectively collect or deliver passenger flows from all origins to all destinations using non‐stop and multi‐stop flights in multi‐fleet operations. The model was formulated as a multi‐commodity network flow problem. A Lagrangian‐based algorithm was developed to solve the problem. To test the model in practice, a case study is presented.  相似文献   

2.
This study addresses guideway network design for personal rapid transit (PRT) favoring transit-oriented development. The guideway network design problem seeks to minimize both the guideway construction cost and users’ travel time. In particular, a set of optional points, known as Steiner points, are introduced in the graph to reduce the guideway length. The model is formulated as a combined Steiner and assignment problem, and a Lagrangian relaxation based solution algorithm is developed to solve the optimal solution. Numerical studies are carried on a real-sized network, and illustrate that the proposed model and solution algorithm can solve the PRT guideway network design problem effectively.  相似文献   

3.
The origin‐based algorithm is embedded into the augmented Lagrangian method for the link‐capacitated traffic assignment problem. In order to solve the “nonexistence” problem due to the second partial derivatives of the augmented Lagrangian function at some specific points, the approximate expressions of the second partial derivatives are amended in the origin‐based algorithm. The graph of last common nodes is developed on the basis of the restricted single‐origin network. A method is proposed for finding n–1 last common nodes of the restricted single‐origin network, resulting in computational complexity of O(n2) in finding last common nodes. Numerical analysis on the Sioux Falls network and Chicago Sketch network demonstrated the effectiveness and characteristics of the proposed algorithm. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
This paper focuses on the simultaneous passenger train routing and timetabling problem on the rail network consisting of both unidirectional and bidirectional tracks using an efficient train-based Lagrangian relaxation decomposition. We first build an integer linear programming model with many 0–1 binary and non-negative integer decision variables, after then reformulate it as a train path-choice model for providing an easier train-based Lagrangian relaxation decomposition mechanism based on the construction of space-time discretized network extending from node-cell-based rail network. Moreover, through reformulating safety usage interval restrictions with a smaller number of constraints in this reformulated model, the train-based decomposition needs fewer Lagrangian multipliers to relax these constraints. On the basis of this decomposition, a solving framework including a heuristic algorithm is proposed to simultaneously optimize both the dual and feasible solutions. A set of numerical experiments demonstrate the proposed Lagrangian relaxation decomposition approach has better performances in terms of minimizing both train travel time and computational times.  相似文献   

5.
We address the problem of simultaneously scheduling trains and planning preventive maintenance time slots (PMTSs) on a general railway network. Based on network cumulative flow variables, a novel integrated mixed-integer linear programming (MILP) model is proposed to simultaneously optimize train routes, orders and passing times at each station, as well as work-time of preventive maintenance tasks (PMTSs). In order to provide an easy decomposition mechanism, the limited capacity of complex tracks is modelled as side constraints and a PMTS is modelled as a virtual train. A Lagrangian relaxation solution framework is proposed, in which the difficult track capacity constraints are relaxed, to decompose the original complex integrated train scheduling and PMTSs planning problem into a sequence of single train-based sub-problems. For each sub-problem, a standard label correcting algorithm is employed for finding the time-dependent least cost path on a time-space network. The resulting dual solutions can be transformed to feasible solutions through priority rules. Numerical experiments are conducted on a small artificial network and a real-world network adapted from a Chinese railway network, to evaluate the effectiveness and computational efficiency of the integrated optimization model and the proposed Lagrangian relaxation solution framework. The benefits of simultaneously scheduling trains and planning PMTSs are demonstrated, compared with a commonly-used sequential scheduling method.  相似文献   

6.
We consider a supply chain network design problem that takes CO2 emissions into account. Emission costs are considered alongside fixed and variable location and production costs. The relationship between CO2 emissions and vehicle weight is modeled using a concave function leading to a concave minimization problem. As the direct solution of the resulting model is not possible, Lagrangian relaxation is used to decompose the problem into a capacitated facility location problem with single sourcing and a concave knapsack problem that can be solved easily. A Lagrangian heuristic based on the solution of the subproblem is proposed. When evaluated on a number of problems with varying capacity and cost characteristics, the proposed algorithm achieves solutions within 1% of the optimal. The test results indicate that considering emission costs can change the optimal configuration of the supply chain, confirming that emission costs should be considered when designing supply chains in jurisdictions with carbon costs.  相似文献   

7.
This research addresses the eco-system optimal dynamic traffic assignment (ESODTA) problem which aims to find system optimal eco-routing or green routing flows that minimize total vehicular emission in a congested network. We propose a generic agent-based ESODTA model and a simplified queueing model (SQM) that is able to clearly distinguish vehicles’ speed in free-flow and congested conditions for multi-scale emission analysis, and facilitates analyzing the relationship between link emission and delay. Based on the SQM, an expanded space-time network is constructed to formulate the ESODTA with constant bottleneck discharge capacities. The resulting integer linear model of the ESODTA is solved by a Lagrangian relaxation-based algorithm. For the simulation-based ESODTA, we present the column-generation-based heuristic, which requires link and path marginal emissions in the embedded time-dependent least-cost path algorithm and the gradient-projection-based descent direction method. We derive a formula of marginal emission which encompasses the marginal travel time as a special case, and develop an algorithm for evaluating path marginal emissions in a congested network. Numerical experiments are conducted to demonstrate that the proposed algorithm is able to effectively obtain coordinated route flows that minimize the system-wide vehicular emission for large-scale networks.  相似文献   

8.
Optimization of on-demand transportation systems and ride-sharing services involves solving a class of complex vehicle routing problems with pickup and delivery with time windows (VRPPDTW). This paper first proposes a new time-discretized multi-commodity network flow model for the VRPPDTW based on the integration of vehicles’ carrying states within space–time transportation networks, so as to allow a joint optimization of passenger-to-vehicle assignment and turn-by-turn routing in congested transportation networks. Our three-dimensional state–space–time network construct is able to comprehensively enumerate possible transportation states at any given time along vehicle space–time paths, and further allows a forward dynamic programming solution algorithm to solve the single vehicle VRPPDTW problem. By utilizing a Lagrangian relaxation approach, the primal multi-vehicle routing problem is decomposed to a sequence of single vehicle routing sub-problems, with Lagrangian multipliers for individual passengers’ requests being updated by sub-gradient-based algorithms. We further discuss a number of search space reduction strategies and test our algorithms, implemented through a specialized program in C++, on medium-scale and large-scale transportation networks, namely the Chicago sketch and Phoenix regional networks.  相似文献   

9.
Efficient transportation of evacuees during an emergency has long been recognized as a challenging issue. This paper investigates emergency evacuation strategies that rely on public transit, where buses run continuously, rather than fixed route, based upon the spatial and temporal information of evacuee needs. We formulated an optimal bus operating strategy that minimizes the exposed casualty time rather than operational cost, as a deterministic mixed‐integer program, and investigated the solution algorithm. A Lagrangian‐relaxation‐based solution algorithm was developed for the proposed model. Numerical experiments with different problem sizes were conducted to evaluate the method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
This research focuses on planning biofuel refinery locations where the total system cost for refinery investment, feedstock and product transportation and public travel is minimized. Shipment routing of both feedstock and product in the biofuel supply chain and the resulting traffic congestion impact are incorporated into the model to decide optimal locations of biofuel refineries. A Lagrangian relaxation based heuristic algorithm is introduced to obtain near-optimum feasible solutions efficiently. To further improve optimality, a branch-and-bound framework (with linear programming relaxation and Lagrangian relaxation bounding procedures) is developed. Numerical experiments with several testing examples demonstrate that the proposed algorithms solve the problem effectively. An empirical Illinois case study and a series of sensitivity analyses are conducted to show the effects of highway congestion on refinery location design and total system costs.  相似文献   

11.
Allocating movable resources dynamically enables evacuation management agencies to improve evacuation system performance in both the spatial and temporal dimensions. This study proposes a mixed integer linear program (MILP) model to address the dynamic resource allocation problem for transportation evacuation planning on large-scale networks. The proposed model is built on the earliest arrival flow formulation that significantly reduces problem size. A set of binary variables, specifically, the beginning and the ending time of resource allocation at a location, enable a strong formulation with tight constraints. A solution algorithm is developed to solve for an optimal solution on large-scale network applications by adopting Benders decomposition. In this algorithm, the MILP model is decomposed into two sub-problems. The first sub-problem, called the restricted master problem, identifies a feasible dynamic resource allocation plan. The second sub-problem, called the auxiliary problem, models dynamic traffic assignment in the evacuation network given a resource allocation plan. A numerical study is performed on the Dallas–Fort Worth network. The results show that the Benders decomposition algorithm can solve an optimal solution efficiently on a large-scale network.  相似文献   

12.
Emerging transportation network services, such as customized buses, hold the promise of expanding overall traveler accessibility in congested metropolitan areas. A number of internet-based customized bus services have been planned and deployed for major origin-destination (OD) pairs to/from inner cities with limited physical road infrastructure. In this research, we aim to develop a joint optimization model for addressing a number of practical challenges for providing flexible public transportation services. First, how to maintain minimum loading rate requirements and increase the number of customers per bus for the bus operators to reach long-term profitability. Second, how to optimize detailed bus routing and timetabling plans to satisfy a wide range of specific user constraints, such as passengers’ pickup and delivery locations with preferred time windows, through flexible decision for matching passengers to bus routes. From a space-time network modeling perspective, this paper develops a multi-commodity network flow-based optimization model to formulate a customized bus service network design problem so as to optimize the utilization of the vehicle capacity while satisfying individual demand requests defined through space-time windows. We further develop a solution algorithm based on the Lagrangian decomposition for the primal problem and a space-time prism based method to reduce the solution search space. Case studies using both the illustrative and real-world large-scale transportation networks are conducted to demonstrate the effectiveness of the proposed algorithm and its sensitivity under different practical operating conditions.  相似文献   

13.
This paper addresses a general stochastic user equilibrium (SUE) traffic assignment problem with link capacity constraints. It first proposes a novel linearly constrained minimization model in terms of path flows and then shows that any of its local minimums satisfies the generalized SUE conditions. As the objective function of the proposed model involves path‐specific delay functions without explicit mathematical expressions, its Lagrangian dual formulation is analyzed. On the basis of the Lagrangian dual model, a convergent Lagrangian dual method with a predetermined step size sequence is developed. This solution method merely invokes a subroutine at each iteration to perform a conventional SUE traffic assignment excluding link capacity constraints. Finally, two numerical examples are used to illustrate the proposed model and solution method.  相似文献   

14.
This paper aims to provide a state-of-the-art review of the transport network design problem (NDP) under uncertainty and to present some new developments on a bi-objective-reliable NDP (BORNDP) model that explicitly optimizes the capacity reliability and travel time reliability under demand uncertainty. Both are useful performance measures that can describe the supply-side reliability and demand-side reliability of a road network. A simulation-based multi-objective genetic algorithm solution procedure, which consists of a traffic assignment algorithm, a genetic algorithm, a Pareto filter, and a Monte-Carlo simulation, is developed to solve the proposed BORNDP model. A numerical example based on the capacity enhancement problem is presented to demonstrate the tradeoff between capacity reliability and travel time reliability in the NDP.  相似文献   

15.
The fare of a transit line is one of the important decision variables for transit network design. It has been advocated as an efficient means of coordinating the transit passenger flows and of alleviating congestion in the transit network. This paper shows how transit fare can be optimized so as to balance the passenger flow on the transit network and to reduce the overload delays of passengers at transit stops. A bi‐level programming method is developed to optimize the transit fare under line capacity constraints. The upper‐level problem seeks to minimize the total network travel time, while the lower‐level problem is a stochastic user equilibrium transit assignment model with line capacity constraints. A heuristic solution algorithm based on sensitivity analysis is proposed. Numerical example is used to illustrate the application of the proposed model and solution algorithm.  相似文献   

16.
This paper presents a model for determining the maximum number of cars by zones in view of the capacity of the road network and the number of parking spaces available. In other words, the proposed model is to examine whether existing road network and parking supply is capable of accommodating future zonal car ownership growth (or the reserve capacity in each zone); i.e. the potential maximum zonal car ownership growth that generates the road traffic within the network capacity and parking space constraints. In the proposed model, the vehicular trip production and attraction are dependent on the car ownership, available parking spaces and the accessibility measures by traffic zones. The model is formulated as a bi-level programming problem. The lower-level problem is an equilibrium trip distribution/assignment problem, while the upper-level problem is to maximize the sum of zonal car ownership by considering travellers’ route and destination choice behaviour and satisfying the network capacity and parking space constraints. A sensitivity analysis based heuristic algorithm is developed to solve the proposed bi-level car ownership problem and is illustrated with a numerical example.  相似文献   

17.
Using a sample-based representation scheme to capture spatial and temporal travel time correlations, this article constructs an integer programming model for finding the a priori least expected time paths. We explicitly consider the non-anticipativity constraint associated with the a priori path in a time-dependent and stochastic network, and propose a number of reformulations to establish linear inequalities that can be easily dualized by a Lagrangian relaxation solution approach. The relaxed model is further decomposed into two sub-problems, which can be solved directly by using a modified label-correcting algorithm and a simple single-value linear programming method. Several solution algorithms, including a sub-gradient method, a branch and bound method, and heuristics with additional constraints on Lagrangian multipliers, are proposed to improve solution quality and find approximate optimal solutions. The numerical experiments investigate the quality and computational efficiency of the proposed solution approach.  相似文献   

18.
Weather conditions have a strong effect on the operation of vessels and unavoidably influence total time at sea and associated transportation costs. The velocity and direction of the wind in particular may considerably affect travel speed of vessels and therefore the reliability of scheduled maritime services. This paper considers weather effects in containership routing; a stochastic model is developed for determining optimal routes for a homogeneous fleet performing pick-ups and deliveries of containers between a hub and several spoke ports, while incorporating travel time uncertainties attributed to the weather. The problem is originally formulated as a chance-constrained variant of the vehicle routing problem with simultaneous pick-ups and deliveries and time constraints and solved using a genetic algorithm. The model is implemented to a network of island ports of the Aegean Sea. Results on the application of algorithm reveal that a small fleet is sufficient enough to serve network’s islands, under the influence of minor delays. A sensitivity analysis based on alternative scenarios in the problem’s parameters, leads to encouraging conclusions with respect to the efficiency and robustness of the algorithm.  相似文献   

19.
The study formulated a ferry network design problem by considering the optimal fleet size, routing, and scheduling for both direct and multi-stop services. The objective function combines both the operator and passengers’ performance measures. Mathematically, the model is formulated as a mixed integer multiple origin–destination network flow problem with ferry capacity constraints. To solve this problem of practical size, this study developed a heuristic algorithm that exploits the polynomial-time performance of shortest path algorithms. Two scenarios of ferry services in Hong Kong were solved to demonstrate the performance of the heuristic algorithm. The results showed that the heuristic produced solutions that were within 1.3% from the CPLEX optimal solutions. The computational time is within tens of seconds even for problem size that is beyond the capability of CPLEX.  相似文献   

20.
Railroad companies spend billions of dollars each year to purchase fuel for thousands of locomotives across the railroad network. Each fuel station charges a site-dependent fuel price, and the railroad companies must pay an additional flat contracting fee in order to use it. This paper presents a linear mixed-integer mathematical model that integrates not only fuel station location decisions but also locomotive fueling schedule decisions. The proposed model helps railroads decide which fuel stations to contract, and how each locomotive should purchase fuel along its predetermined shipment path, such that no locomotive runs out of fuel while the summation of fuel purchasing costs, shipment delay costs (due to fueling), and contracting charges is minimized. A Lagrangian relaxation framework is proposed to decompose the problem into fueling schedule and facility location selection sub-problems. A network shortest path formulation of the fueling schedule sub-problem is developed to obtain an exact optimal solution to the fueling schedule sub-problem. The proposed framework is applied to a large-scale empirical case and is shown to effectively reduce system costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号