首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
基于BP神经网络的GPS高程拟合方法的探讨   总被引:13,自引:1,他引:13  
为了提高GPS高程测量的精度,提出了基于BP神经网络的GPS高程拟合方法,并以2座特大桥控制网数据为例,与常规多项式曲面拟合方法进行了比较.理论和实例证明,利用BP神经网络进行GPS高程拟合是可行的。尤其是在已知点较少的情况下,该方法具有实际意义.  相似文献   

2.
为了定量预测多个外部因素影响下的货运量,建立了混合径向基神经网络模型.该模型以径向基神经网络为模型主体,并结合二阶振荡粒子群优化算法和灰色预测方法构成混合预测模型.该神经网络模型的参数设置更加简便,收敛速度更快.实例预测得到的结果相比较其他预测方法绝对误差值更小,误差变化范围更加稳定,证实了该神经网络模型的有效性,表明了其在多因素影响下的货运量预测中具有很好的适用性.  相似文献   

3.
基于进化规划的BP神经网络学习   总被引:3,自引:1,他引:3  
通过对将传统的BP算法和遗传算法应用到BP神经网络的学习的研究和分析,指出它们存在的缺陷。提出一个改进的进化规划算法,并将其应用于BP神经网络的权值优化。取XOR问题和4奇偶性问题的实验对传统的进化规划算法和改进的进化规划算法进行实验对比。实验结果表明,本文中提出的改进的进化规划算法优于前2个算法。  相似文献   

4.
与常规数学模型法相比,基于BP神经网络的GPS高程异常拟合法能有效避免数学模型带来的误差,本文利用MATLAB提供的神经网络函数编程实现了GPS高程拟合,结果表明BP神经网络在GPS高程转换方面具有一定的优越性。  相似文献   

5.
BP神经网络(BPNN)已经用于车速预测方面的研究.针对BPNN不同的初始权值和阈值会影响车速预测精度的问题,提出一种基于GA-PSO混合优化的BPNN车速预测方法.以北工大西门到百葛桥为研究路径,构建基于BPNN的车速预测模型;将遗传算法(GA)和粒子群算法(PSO)的寻优过程进行融合,通过逐次迭代取最优的方式确定BPNN的最优初始权值和阈值,以此设计基于GA-PSO混合优化的BPNN车速预测方法.最后,以所选路径为对象,利用基于GA-BPNN的预测法、基于PSO-BPNN的预测法,以及提出的方法对车速进行了实验预测.结果表明,相较于前两种车速预测改进方法,本文方法的平均车速预测误差分别降低了37.1%和24.1%,有效地提高了车速的预测精度.  相似文献   

6.
在对车牌定位识别中采用传统算法进行特征提取的时候, 当目标图像质量较差或者有较大的退化时, 不是很有效.遗传算法作为一种新兴的智能算法,近年来被应用于许多社会生活领域中,并比较好地解决了相关领域的优化问题,近年来,有些学者应用遗传定位算法来解决车牌定位问题.  相似文献   

7.
针对大跨度连续刚构桥有限元模型修正问题,提出一种基于改进粒子群算法优化BP神经网络的有限元模型修正方法。首先建立有限元模型修正的数学优化模型,其次通过改进标准粒子群算法对BP神经网络超参数进行优化,最后基于优化BP神经网络代理模型对有限元结构参数进行寻优求解。研究结果表明:基于优化BP神经网络的代理模型相较于未经优化的具有更高的拟合精度;修正后的有限元模型挠度理论计算值与实测值的平均相对误差仅为1.86%。  相似文献   

8.
针对传统人工神经网络中的BP(back propagation)神经网络自身局限以及其迭代次数多、收敛精度不高和泛化性差等缺点,提出了一种基于粒子群(particle swarm optimizer,PSO)算法的BP神经网络优化证券投资组合方法.在BP神经网络优化方法中,采用PSO算法替代了BP神经网络的梯度下降法,得到最优解,从而对BP神经网络模型进行优化.将该方法应用于证券投资组合的优化中,实验结果证明:该优化方法优于传统的BP神经网络优化方法.  相似文献   

9.
基于贝叶斯正则化 BP 神经网络的 GPS 高程转换   总被引:8,自引:0,他引:8  
为了改善BP神经网络在GPS高程转换过程中过拟合的现象,提出了用贝叶斯正则化算法的BP神经网络转换GPS高程的新方法,并利用区域GPS/水准数据,将新方法和未采用正则化算法的BP神经网络进行GPS高程转换的比较.结果表明:在较大区域和高程异常呈不规则的情况下,新方法不仅可以有效提高GPS高程转换的精度,而且通过贝叶斯正则化算法可以改善网络结构,抑制过拟合现象.在约10 km的GPS基线尺度上,新方法可以得到精度达0.050 m的正常高.  相似文献   

10.
遗传算法神经网络的学习方法   总被引:1,自引:0,他引:1  
提出了利用遗传算法的思想实现人工神经网络学习的方法,并具体讨论了在实现中的若干问题。  相似文献   

11.
PSO-BP混合预测模型及在港口集装箱吞吐量预测中的应用   总被引:1,自引:0,他引:1  
运用粒子群优化算法代替BP神经网络的初始寻优,再用BP算法对优化的网络权值参数进一步精确优化,从而建立基于粒子群优化的BP神经网络模型.运用该模型对某港口集装箱吞吐量进行预测.应用结果表明,该预测模型不仅能较好地拟合港口集装箱吞吐量的历史数据,同时对港口集装箱吞吐量的远期预测也具有较好的效果.  相似文献   

12.
为了提高船舶交通流量的预测精度,在BP神经网络的基础上,结合遗传算法(GA)建立一个新的预测模型.该模型利用GA自适应搜索能力和较快的收敛速度,进而确定BP神经网络中的最优权值和阈值.以青岛港2011—2019年船舶交通流量统计数据为例,进行仿真实例验证.结果表明,与传统的BP神经网络相比,该模型能显著地提高船舶交通流量的预测精度,用于预测船舶交通流量具有一定可行性.  相似文献   

13.
欧阳帆 《交通标准化》2013,(12):133-136
在传统多种单项预测模型与组合预测方法的基础上,利用BP神经网络技术的非线性映射能力,在多个预测模型与实际数列之间建立一种非线性关系,对运量预测结果进行优化,以达到提高预测精度的目的.通过实例分析,表明这种经过BP神经网络优化后的预测模型,可一定程度上克服传统单个预测模型的部分局限性,提高预测精度,用于运量预测是可行的.  相似文献   

14.
基于BP神经网络对非线性系统辨识的通用性和自适应性等特点,构建了一个BP神经网络模型,增强了网络的自适应能力和学习能力,提高了网络的精度和收敛速度,并在此基础上开发出一个高效准确的手写体字符识别系统.  相似文献   

15.
为了提高粒子群算法的收敛速度和全局寻优能力,用多智能体遗传算法对粒子群算法当前搜索到的全局极值进行局部寻优.用搜索到的更好的解在下一次迭代中引导粒子进行搜索从而获得更快的收敛速度和更好的全局收敛性。对函数优化和神经网络训练的仿真实验表明.此算法能更快的收敛到全局最优解。  相似文献   

16.
在总结交通流短期预M方法发展趋势的基础上,分别介绍了基于常规的BP神经网络和基于RBF神经网络的交通流量短期预测模型,并重点研究RBF网络模型的预测性能,确定了关健参数、的最优值.最后应用两种模型时北京环路实测交通流数据进行了预刚分析,实验结果表明,两种模型都可以满足实际交通流诱导的需要,BP模型在预则精度上稍优于RBF模型,但后者在学习速度和学习稳定性等方面明显优于前者.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号